{-# LANGUAGE StandaloneDeriving, FlexibleContexts, UndecidableInstances, TypeFamilies #-} module Math.NURBS ( NURBS , nurbs, toNURBS , evalNURBS, nurbsDomain , nurbsDegree, nurbsKnotVector, nurbsControlPoints , splitNURBS ) where import qualified Data.Vector as V import Data.VectorSpace import Math.Spline.Class (Spline, toBSpline) import Math.Spline.BSpline.Internal import Math.Spline.BSpline import Math.Spline.Knots newtype NURBS v = NURBS (BSpline (Scalar v, v)) deriving instance (Eq v, Eq (Scalar v), Eq (Scalar (Scalar v))) => Eq (NURBS v) deriving instance (Ord v, Ord (Scalar v), Ord (Scalar (Scalar v))) => Ord (NURBS v) instance (Show v, Show (Scalar v), Show (Scalar (Scalar v))) => Show (NURBS v) where showsPrec p (NURBS spline) = showParen (p>11) ( showString "nurbs " . showsPrec 11 spline ) toNURBS :: (Spline s v, Scalar v ~ Scalar (Scalar v)) => s v -> NURBS v toNURBS = NURBS . mapControlPoints (\p -> (1,p)) . toBSpline nurbs :: (VectorSpace v, Scalar v ~ w, VectorSpace w, Scalar w ~ w) => Knots (Scalar v) -> V.Vector (w, v) -> NURBS v nurbs kts cps = NURBS (bSpline kts cps) -- |Constructs the homogeneous-coordinates B-spline that corresponds to this -- NURBS curve nurbsAsSpline (NURBS spline) = spline { controlPoints = V.map homogenize (controlPoints spline) } where homogenize (w,v) = (w, w *^ v) -- |Constructs the NURBS curve corresponding to a homogeneous-coordinates B-spline splineAsNURBS spline = NURBS spline { controlPoints = V.map unHomogenize (controlPoints spline) } where unHomogenize (w,v) = (w, recip w *^ v) evalNURBS :: (VectorSpace v, Scalar v ~ w, VectorSpace w, Scalar w ~ w, Fractional w, Ord w) => NURBS v -> w -> v evalNURBS nurbs = project . evalBSpline (nurbsAsSpline nurbs) where project (w,v) = recip w *^ v -- |Returns the domain of a NURBS - that is, the range of parameter values -- over which a spline with this degree and knot vector has a full basis set. nurbsDomain :: Scalar v ~ Scalar (Scalar v) => NURBS v -> Maybe (Scalar v, Scalar v) nurbsDomain (NURBS spline) = knotDomain (knotVector spline) (degree spline) nurbsDegree :: NURBS v -> Int nurbsDegree (NURBS spline) = degree spline nurbsKnotVector :: Scalar v ~ Scalar (Scalar v) => NURBS v -> Knots (Scalar v) nurbsKnotVector (NURBS spline) = knotVector spline nurbsControlPoints :: NURBS v -> V.Vector (Scalar v, v) nurbsControlPoints (NURBS spline) = controlPoints spline splitNURBS :: (VectorSpace v, Scalar v ~ w, VectorSpace w, Scalar w ~ w, Ord w, Fractional w) => NURBS v -> Scalar v -> Maybe (NURBS v, NURBS v) splitNURBS nurbs t = do (s0, s1) <- splitBSpline (nurbsAsSpline nurbs) t return (splineAsNURBS s0, splineAsNURBS s1)