{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE DeriveDataTypeable, DeriveGeneric #-}
-- |
-- Module    : Statistics.Types
-- Copyright : (c) 2009 Bryan O'Sullivan
-- License   : BSD3
--
-- Maintainer  : bos@serpentine.com
-- Stability   : experimental
-- Portability : portable
--
-- Data types common used in statistics
module Statistics.Types
    ( -- * Confidence level
      CL
      -- ** Accessors
    , confidenceLevel
    , significanceLevel
      -- ** Constructors
    , mkCL
    , mkCLE
    , mkCLFromSignificance
    , mkCLFromSignificanceE
      -- ** Constants and conversion to nσ
    , cl90
    , cl95
    , cl99
      -- *** Normal approximation
    , nSigma
    , nSigma1
    , getNSigma
    , getNSigma1
      -- * p-value
    , PValue
      -- ** Accessors
    , pValue
      -- ** Constructors
    , mkPValue
    , mkPValueE
      -- * Estimates and upper/lower limits
    , Estimate(..)
    , NormalErr(..)
    , ConfInt(..)
    , UpperLimit(..)
    , LowerLimit(..)
      -- ** Constructors
    , estimateNormErr
    , (±)
    , estimateFromInterval
    , estimateFromErr
      -- ** Accessors
    , confidenceInterval
    , asymErrors
    , Scale(..)
      -- * Other
    , Sample
    , WeightedSample
    , Weights
    ) where

import Control.Monad                ((<=<))
import Control.DeepSeq              (NFData(..))
import Data.Aeson                   (FromJSON(..), ToJSON)
import Data.Binary                  (Binary(..))
import Data.Data                    (Data,Typeable)
import Data.Maybe                   (fromMaybe)
import Data.Vector.Unboxed          (Unbox)
import Data.Vector.Unboxed.Deriving (derivingUnbox)
import GHC.Generics (Generic)

import Statistics.Internal
import Statistics.Types.Internal
import Statistics.Distribution
import Statistics.Distribution.Normal


----------------------------------------------------------------
-- Data type for confidence level
----------------------------------------------------------------

-- |
-- Confidence level. In context of confidence intervals it's
-- probability of said interval covering true value of measured
-- value. In context of statistical tests it's @1-α@ where α is
-- significance of test.
--
-- Since confidence level are usually close to 1 they are stored as
-- @1-CL@ internally. There are two smart constructors for @CL@:
-- 'mkCL' and 'mkCLFromSignificance' (and corresponding variant
-- returning @Maybe@). First creates @CL@ from confidence level and
-- second from @1 - CL@ or significance level.
--
-- >>> cl95
-- mkCLFromSignificance 0.05
--
-- Prior to 0.14 confidence levels were passed to function as plain
-- @Doubles@. Use 'mkCL' to convert them to @CL@.
newtype CL a = CL a
               deriving (Eq, Typeable, Data, Generic)

instance Show a => Show (CL a) where
  showsPrec n (CL p) = defaultShow1 "mkCLFromSignificance" p n
instance (Num a, Ord a, Read a) => Read (CL a) where
  readPrec = defaultReadPrecM1 "mkCLFromSignificance" mkCLFromSignificanceE

instance (Binary a, Num a, Ord a) => Binary (CL a) where
  put (CL p) = put p
  get        = maybe (fail errMkCL) return . mkCLFromSignificanceE =<< get

instance (ToJSON a)                 => ToJSON   (CL a)
instance (FromJSON a, Num a, Ord a) => FromJSON (CL a) where
  parseJSON = maybe (fail errMkCL) return . mkCLFromSignificanceE <=< parseJSON

instance NFData   a => NFData   (CL a) where
  rnf (CL a) = rnf a

-- |
-- >>> cl95 > cl90
-- True
instance Ord a => Ord (CL a) where
  CL a <  CL b = a >  b
  CL a <= CL b = a >= b
  CL a >  CL b = a <  b
  CL a >= CL b = a <= b
  max (CL a) (CL b) = CL (min a b)
  min (CL a) (CL b) = CL (max a b)


-- | Create confidence level from probability β or probability
--   confidence interval contain true value of estimate. Will throw
--   exception if parameter is out of [0,1] range
--
-- >>> mkCL 0.95    -- same as cl95
-- mkCLFromSignificance 0.05
mkCL :: (Ord a, Num a) => a -> CL a
mkCL
  = fromMaybe (error "Statistics.Types.mkCL: probability is out if [0,1] range")
  . mkCLE

-- | Same as 'mkCL' but returns @Nothing@ instead of error if
--   parameter is out of [0,1] range
--
-- >>> mkCLE 0.95    -- same as cl95
-- Just (mkCLFromSignificance 0.05)
mkCLE :: (Ord a, Num a) => a -> Maybe (CL a)
mkCLE p
  | p >= 0 && p <= 1 = Just $ CL (1 - p)
  | otherwise        = Nothing

-- | Create confidence level from probability α or probability that
--   confidence interval does not contain true value of estimate. Will
--   throw exception if parameter is out of [0,1] range
--
-- >>> mkCLFromSignificance 0.05    -- same as cl95
-- mkCLFromSignificance 0.05
mkCLFromSignificance :: (Ord a, Num a) => a -> CL a
mkCLFromSignificance = fromMaybe (error errMkCL) . mkCLFromSignificanceE

-- | Same as 'mkCLFromSignificance' but returns @Nothing@ instead of error if
--   parameter is out of [0,1] range
--
-- >>> mkCLFromSignificanceE 0.05    -- same as cl95
-- Just (mkCLFromSignificance 0.05)
mkCLFromSignificanceE :: (Ord a, Num a) => a -> Maybe (CL a)
mkCLFromSignificanceE p
  | p >= 0 && p <= 1 = Just $ CL p
  | otherwise        = Nothing

errMkCL :: String
errMkCL = "Statistics.Types.mkPValCL: probability is out if [0,1] range"


-- | Get confidence level. This function is subject to rounding
--   errors. If @1 - CL@ is needed use 'significanceLevel' instead
confidenceLevel :: (Num a) => CL a -> a
confidenceLevel (CL p) = 1 - p

-- | Get significance level.
significanceLevel :: CL a -> a
significanceLevel (CL p) = p



-- | 90% confidence level
cl90 :: Fractional a => CL a
cl90 = CL 0.10

-- | 95% confidence level
cl95 :: Fractional a => CL a
cl95 = CL 0.05

-- | 99% confidence level
cl99 :: Fractional a => CL a
cl99 = CL 0.01



----------------------------------------------------------------
-- Data type for p-value
----------------------------------------------------------------

-- | Newtype wrapper for p-value.
newtype PValue a = PValue a
               deriving (Eq,Ord, Typeable, Data, Generic)

instance Show a => Show (PValue a) where
  showsPrec n (PValue p) = defaultShow1 "mkPValue" p n
instance (Num a, Ord a, Read a) => Read (PValue a) where
  readPrec = defaultReadPrecM1 "mkPValue" mkPValueE

instance (Binary a, Num a, Ord a) => Binary (PValue a) where
  put (PValue p) = put p
  get            = maybe (fail errMkPValue) return . mkPValueE =<< get

instance (ToJSON a)                 => ToJSON   (PValue a)
instance (FromJSON a, Num a, Ord a) => FromJSON (PValue a) where
  parseJSON = maybe (fail errMkPValue) return . mkPValueE <=< parseJSON

instance NFData a => NFData (PValue a) where
  rnf (PValue a) = rnf a


-- | Construct PValue. Throws error if argument is out of [0,1] range.
--
mkPValue :: (Ord a, Num a) => a -> PValue a
mkPValue = fromMaybe (error errMkPValue) . mkPValueE

-- | Construct PValue. Returns @Nothing@ if argument is out of [0,1] range.
mkPValueE :: (Ord a, Num a) => a -> Maybe (PValue a)
mkPValueE p
  | p >= 0 && p <= 1 = Just $ PValue p
  | otherwise        = Nothing

-- | Get p-value
pValue :: PValue a -> a
pValue (PValue p) = p


-- | P-value expressed in sigma. This is convention widely used in
--   experimental physics. N sigma confidence level corresponds to
--   probability within N sigma of normal distribution.
--
--   Note that this correspondence is for normal distribution. Other
--   distribution will have different dependency. Also experimental
--   distribution usually only approximately normal (especially at
--   extreme tails).
nSigma :: Double -> PValue Double
nSigma n
  | n > 0     = PValue $ 2 * cumulative standard (-n)
  | otherwise = error "Statistics.Extra.Error.nSigma: non-positive number of sigma"

-- | P-value expressed in sigma for one-tail hypothesis. This correspond to
--   probability of obtaining value less than @N·σ@.
nSigma1 :: Double -> PValue Double
nSigma1 n
  | n > 0     = PValue $ cumulative standard (-n)
  | otherwise = error "Statistics.Extra.Error.nSigma1: non-positive number of sigma"

-- | Express confidence level in sigmas
getNSigma :: PValue Double -> Double
getNSigma (PValue p) = negate $ quantile standard (p / 2)

-- | Express confidence level in sigmas for one-tailed hypothesis.
getNSigma1 :: PValue Double -> Double
getNSigma1 (PValue p) = negate $ quantile standard p



errMkPValue :: String
errMkPValue = "Statistics.Types.mkPValue: probability is out if [0,1] range"



----------------------------------------------------------------
-- Point estimates
----------------------------------------------------------------

-- |
-- A point estimate and its confidence interval. It's parametrized by
-- both error type @e@ and value type @a@. This module provides two
-- types of error: 'NormalErr' for normally distributed errors and
-- 'ConfInt' for error with normal distribution. See their
-- documentation for more details.
--
-- For example @144 ± 5@ (assuming normality) could be expressed as
--
-- > Estimate { estPoint = 144
-- >          , estError = NormalErr 5
-- >          }
--
-- Or if we want to express @144 + 6 - 4@ at CL95 we could write:
--
-- > Estimate { estPoint = 144
-- >          , estError = ConfInt
-- >                       { confIntLDX = 4
-- >                       , confIntUDX = 6
-- >                       , confIntCL  = cl95
-- >                       }
--
-- Prior to statistics 0.14 @Estimate@ data type used following definition:
--
-- > data Estimate = Estimate {
-- >      estPoint           :: {-# UNPACK #-} !Double
-- >    , estLowerBound      :: {-# UNPACK #-} !Double
-- >    , estUpperBound      :: {-# UNPACK #-} !Double
-- >    , estConfidenceLevel :: {-# UNPACK #-} !Double
-- >    }
--
-- Now type @Estimate ConfInt Double@ should be used instead. Function
-- 'estimateFromInterval' allow to easily construct estimate from same inputs.
data Estimate e a = Estimate
    { estPoint           :: !a
      -- ^ Point estimate.
    , estError           :: !(e a)
      -- ^ Confidence interval for estimate.
    } deriving (Eq, Read, Show, Typeable, Data, Generic)

instance (Binary   (e a), Binary   a) => Binary   (Estimate e a)
instance (FromJSON (e a), FromJSON a) => FromJSON (Estimate e a)
instance (ToJSON   (e a), ToJSON   a) => ToJSON   (Estimate e a)
instance (NFData   (e a), NFData   a) => NFData   (Estimate e a) where
    rnf (Estimate x dx) = rnf x `seq` rnf dx



-- |
-- Normal errors. They are stored as 1σ errors which corresponds to
-- 68.8% CL. Since we can recalculate them to any confidence level if
-- needed we don't store it.
newtype NormalErr a = NormalErr
  { normalError :: a
  }
  deriving (Eq, Read, Show, Typeable, Data, Generic)

instance Binary   a => Binary   (NormalErr a)
instance FromJSON a => FromJSON (NormalErr a)
instance ToJSON   a => ToJSON   (NormalErr a)
instance NFData   a => NFData   (NormalErr a) where
    rnf (NormalErr x) = rnf x


-- | Confidence interval. It assumes that confidence interval forms
--   single interval and isn't set of disjoint intervals.
data ConfInt a = ConfInt
  { confIntLDX :: !a
    -- ^ Lower error estimate, or distance between point estimate and
    --   lower bound of confidence interval.
  , confIntUDX :: !a
    -- ^ Upper error estimate, or distance between point estimate and
    --   upper bound of confidence interval.
  , confIntCL  :: !(CL Double)
    -- ^ Confidence level corresponding to given confidence interval.
  }
  deriving (Read,Show,Eq,Typeable,Data,Generic)

instance Binary   a => Binary   (ConfInt a)
instance FromJSON a => FromJSON (ConfInt a)
instance ToJSON   a => ToJSON   (ConfInt a)
instance NFData   a => NFData   (ConfInt a) where
    rnf (ConfInt x y _) = rnf x `seq` rnf y



----------------------------------------
-- Constructors

-- | Create estimate with normal errors
estimateNormErr :: a            -- ^ Point estimate
                -> a            -- ^ 1σ error
                -> Estimate NormalErr a
estimateNormErr x dx = Estimate x (NormalErr dx)

-- | Synonym for 'estimateNormErr'
(±) :: a      -- ^ Point estimate
    -> a      -- ^ 1σ error
    -> Estimate NormalErr a
(±) = estimateNormErr

-- | Create estimate with asymmetric error.
estimateFromErr
  :: a                     -- ^ Central estimate
  -> (a,a)                 -- ^ Lower and upper errors. Both should be
                           --   positive but it's not checked.
  -> CL Double             -- ^ Confidence level for interval
  -> Estimate ConfInt a
estimateFromErr x (ldx,udx) cl = Estimate x (ConfInt ldx udx cl)

-- | Create estimate with asymmetric error.
estimateFromInterval
  :: Num a
  => a                     -- ^ Point estimate. Should lie within
                           --   interval but it's not checked.
  -> (a,a)                 -- ^ Lower and upper bounds of interval
  -> CL Double             -- ^ Confidence level for interval
  -> Estimate ConfInt a
estimateFromInterval x (lx,ux) cl
  = Estimate x (ConfInt (x-lx) (ux-x) cl)


----------------------------------------
-- Accessors

-- | Get confidence interval
confidenceInterval :: Num a => Estimate ConfInt a -> (a,a)
confidenceInterval (Estimate x (ConfInt ldx udx _))
  = (x - ldx, x + udx)

-- | Get asymmetric errors
asymErrors :: Estimate ConfInt a -> (a,a)
asymErrors (Estimate _ (ConfInt ldx udx _)) = (ldx,udx)



-- | Data types which could be multiplied by constant.
class Scale e where
  scale :: (Ord a, Num a) => a -> e a -> e a

instance Scale NormalErr where
  scale a (NormalErr e) = NormalErr (abs a * e)

instance Scale ConfInt where
  scale a (ConfInt l u cl) | a >= 0    = ConfInt  (a*l)  (a*u) cl
                           | otherwise = ConfInt (-a*u) (-a*l) cl

instance Scale e => Scale (Estimate e) where
  scale a (Estimate x dx) = Estimate (a*x) (scale a dx)



----------------------------------------------------------------
-- Upper/lower limit
----------------------------------------------------------------

-- | Upper limit. They are usually given for small non-negative values
--   when it's not possible detect difference from zero.
data UpperLimit a = UpperLimit
    { upperLimit        :: !a
      -- ^ Upper limit
    , ulConfidenceLevel :: !(CL Double)
      -- ^ Confidence level for which limit was calculated
    } deriving (Eq, Read, Show, Typeable, Data, Generic)


instance Binary   a => Binary   (UpperLimit a)
instance FromJSON a => FromJSON (UpperLimit a)
instance ToJSON   a => ToJSON   (UpperLimit a)
instance NFData   a => NFData   (UpperLimit a) where
    rnf (UpperLimit x cl) = rnf x `seq` rnf cl



-- | Lower limit. They are usually given for large quantities when
--   it's not possible to measure them. For example: proton half-life
data LowerLimit a = LowerLimit {
    lowerLimit        :: !a
    -- ^ Lower limit
  , llConfidenceLevel :: !(CL Double)
    -- ^ Confidence level for which limit was calculated
  } deriving (Eq, Read, Show, Typeable, Data, Generic)

instance Binary   a => Binary   (LowerLimit a)
instance FromJSON a => FromJSON (LowerLimit a)
instance ToJSON   a => ToJSON   (LowerLimit a)
instance NFData   a => NFData   (LowerLimit a) where
    rnf (LowerLimit x cl) = rnf x `seq` rnf cl


----------------------------------------------------------------
-- Deriving unbox instances
----------------------------------------------------------------

derivingUnbox "CL"
  [t| forall a. Unbox a => CL a -> a |]
  [| \(CL a) -> a |]
  [| CL           |]

derivingUnbox "PValue"
  [t| forall a. Unbox a => PValue a -> a |]
  [| \(PValue a) -> a |]
  [| PValue           |]

derivingUnbox "Estimate"
  [t| forall a e. (Unbox a, Unbox (e a)) => Estimate e a -> (a, e a) |]
  [| \(Estimate x dx) -> (x,dx) |]
  [| \(x,dx) -> (Estimate x dx) |]

derivingUnbox "NormalErr"
  [t| forall a. Unbox a => NormalErr a -> a |]
  [| \(NormalErr a) -> a |]
  [| NormalErr           |]

derivingUnbox "ConfInt"
  [t| forall a. Unbox a => ConfInt a -> (a, a, CL Double) |]
  [| \(ConfInt a b c) -> (a,b,c) |]
  [| \(a,b,c) -> ConfInt a b c   |]

derivingUnbox "UpperLimit"
  [t| forall a. Unbox a => UpperLimit a -> (a, CL Double) |]
  [| \(UpperLimit a b) -> (a,b) |]
  [| \(a,b) -> UpperLimit a b   |]

derivingUnbox "LowerLimit"
  [t| forall a. Unbox a => LowerLimit a -> (a, CL Double) |]
  [| \(LowerLimit a b) -> (a,b) |]
  [| \(a,b) -> LowerLimit a b   |]