-- | -- Module : Streamly.Internal.Data.Ring.Unboxed -- Copyright : (c) 2019 Composewell Technologies -- License : BSD3 -- Maintainer : streamly@composewell.com -- Stability : experimental -- Portability : GHC -- -- A ring array is a circular mutable array. -- XXX Write benchmarks -- XXX Make the implementation similar to mutable array -- XXX Rename this module to Data.RingArray.Storable module Streamly.Internal.Data.Ring.Unboxed ( Ring(..) -- * Construction , new , newRing , writeN , advance , moveBy , startOf -- * Random writes , unsafeInsert , slide , putIndex , modifyIndex -- * Unfolds , read , readRev -- * Random reads , getIndex , getIndexUnsafe , getIndexRev -- * Size , length , byteLength -- , capacity , byteCapacity , bytesFree -- * Casting , cast , castUnsafe , asBytes , fromArray -- * Folds , unsafeFoldRing , unsafeFoldRingM , unsafeFoldRingFullM , unsafeFoldRingNM -- * Stream of Arrays , ringsOf -- * Fast Byte Comparisons , unsafeEqArray , unsafeEqArrayN , slidingWindow , slidingWindowWith ) where #include "ArrayMacros.h" #include "inline.hs" import Control.Exception (assert) import Control.Monad.IO.Class (MonadIO(..)) import Data.Word (Word8) import Foreign.Storable import Foreign.ForeignPtr (ForeignPtr, withForeignPtr, touchForeignPtr) import Foreign.ForeignPtr.Unsafe (unsafeForeignPtrToPtr) import Foreign.Ptr (plusPtr, minusPtr, castPtr) import Streamly.Internal.Data.Unboxed as Unboxed (Unbox, peekWith) import GHC.ForeignPtr (mallocPlainForeignPtrAlignedBytes) import GHC.Ptr (Ptr(..)) import Streamly.Internal.Data.Array.Mut.Type (MutArray) import Streamly.Internal.Data.Fold.Type (Fold(..), Step(..), lmap) import Streamly.Internal.Data.Stream.StreamD.Type (Stream) import Streamly.Internal.Data.Stream.StreamD.Step (Step(..)) import Streamly.Internal.Data.Unfold.Type (Unfold(..)) import Streamly.Internal.System.IO (unsafeInlineIO) import qualified Streamly.Internal.Data.Array.Mut.Type as MA import qualified Streamly.Internal.Data.Array.Type as A import Prelude hiding (length, concat, read) -- $setup -- >>> :m -- >>> import qualified Streamly.Internal.Data.Ring.Unboxed as Ring -- | A ring buffer is a mutable array of fixed size. Initially the array is -- empty, with ringStart pointing at the start of allocated memory. We call the -- next location to be written in the ring as ringHead. Initially ringHead == -- ringStart. When the first item is added, ringHead points to ringStart + -- sizeof item. When the buffer becomes full ringHead would wrap around to -- ringStart. When the buffer is full, ringHead always points at the oldest -- item in the ring and the newest item added always overwrites the oldest -- item. -- -- When using it we should keep in mind that a ringBuffer is a mutable data -- structure. We should not leak out references to it for immutable use. -- data Ring a = Ring { ringStart :: {-# UNPACK #-} !(ForeignPtr a) -- first address , ringBound :: {-# UNPACK #-} !(Ptr a) -- first address beyond allocated memory } ------------------------------------------------------------------------------- -- Construction ------------------------------------------------------------------------------- -- | Get the first address of the ring as a pointer. startOf :: Ring a -> Ptr a startOf = unsafeForeignPtrToPtr . ringStart -- | Create a new ringbuffer and return the ring buffer and the ringHead. -- Returns the ring and the ringHead, the ringHead is same as ringStart. {-# INLINE new #-} new :: forall a. Storable a => Int -> IO (Ring a, Ptr a) new count = do let size = count * max 1 (sizeOf (undefined :: a)) fptr <- mallocPlainForeignPtrAlignedBytes size (alignment (undefined :: a)) let p = unsafeForeignPtrToPtr fptr return (Ring { ringStart = fptr , ringBound = p `plusPtr` size }, p) -- XXX Rename this to "new". -- -- | @newRing count@ allocates an empty array that can hold 'count' items. The -- memory of the array is uninitialized and the allocation is aligned as per -- the 'Storable' instance of the type. -- -- /Unimplemented/ {-# INLINE newRing #-} newRing :: Int -> m (Ring a) newRing = undefined -- | Advance the ringHead by 1 item, wrap around if we hit the end of the -- array. {-# INLINE advance #-} advance :: forall a. Storable a => Ring a -> Ptr a -> Ptr a advance Ring{..} ringHead = let ptr = PTR_NEXT(ringHead,a) in if ptr < ringBound then ptr else unsafeForeignPtrToPtr ringStart -- | Move the ringHead by n items. The direction depends on the sign on whether -- n is positive or negative. Wrap around if we hit the beginning or end of the -- array. {-# INLINE moveBy #-} moveBy :: forall a. Storable a => Int -> Ring a -> Ptr a -> Ptr a moveBy by Ring {..} ringHead = ringStartPtr `plusPtr` advanceFromHead where elemSize = STORABLE_SIZE_OF(a) ringStartPtr = unsafeForeignPtrToPtr ringStart lenInBytes = ringBound `minusPtr` ringStartPtr offInBytes = ringHead `minusPtr` ringStartPtr len = assert (lenInBytes `mod` elemSize == 0) $ lenInBytes `div` elemSize off = assert (offInBytes `mod` elemSize == 0) $ offInBytes `div` elemSize advanceFromHead = (off + by `mod` len) * elemSize -- XXX Move the writeLastN from array module here. -- -- | @writeN n@ is a rolling fold that keeps the last n elements of the stream -- in a ring array. -- -- /Unimplemented/ {-# INLINE writeN #-} writeN :: -- (Storable a, MonadIO m) => Int -> Fold m a (Ring a) writeN = undefined ------------------------------------------------------------------------------- -- Conversions ------------------------------------------------------------------------------- -- | Cast a mutable array to a ring array. fromArray :: MutArray a -> Ring a fromArray = undefined ------------------------------------------------------------------------------- -- Conversion to/from array ------------------------------------------------------------------------------- -- | Modify a given index of a ring array using a modifier function. -- -- /Unimplemented/ modifyIndex :: -- forall m a b. (MonadIO m, Storable a) => Ring a -> Int -> (a -> (a, b)) -> m b modifyIndex = undefined -- | /O(1)/ Write the given element at the given index in the ring array. -- Performs in-place mutation of the array. -- -- >>> putIndex arr ix val = Ring.modifyIndex arr ix (const (val, ())) -- -- /Unimplemented/ {-# INLINE putIndex #-} putIndex :: -- (MonadIO m, Storable a) => Ring a -> Int -> a -> m () putIndex = undefined -- | Insert an item at the head of the ring, when the ring is full this -- replaces the oldest item in the ring with the new item. This is unsafe -- beause ringHead supplied is not verified to be within the Ring. Also, -- the ringStart foreignPtr must be guaranteed to be alive by the caller. {-# INLINE unsafeInsert #-} unsafeInsert :: Storable a => Ring a -> Ptr a -> a -> IO (Ptr a) unsafeInsert rb ringHead newVal = do poke ringHead newVal -- touchForeignPtr (ringStart rb) return $ advance rb ringHead -- | Insert an item at the head of the ring, when the ring is full this -- replaces the oldest item in the ring with the new item. -- -- /Unimplemented/ slide :: -- forall m a. (MonadIO m, Storable a) => Ring a -> a -> m (Ring a) slide = undefined ------------------------------------------------------------------------------- -- Random reads ------------------------------------------------------------------------------- -- | Return the element at the specified index without checking the bounds. -- -- Unsafe because it does not check the bounds of the ring array. {-# INLINE_NORMAL getIndexUnsafe #-} getIndexUnsafe :: -- forall m a. (MonadIO m, Storable a) => Ring a -> Int -> m a getIndexUnsafe = undefined -- | /O(1)/ Lookup the element at the given index. Index starts from 0. -- {-# INLINE getIndex #-} getIndex :: -- (MonadIO m, Storable a) => Ring a -> Int -> m a getIndex = undefined -- | /O(1)/ Lookup the element at the given index from the end of the array. -- Index starts from 0. -- -- Slightly faster than computing the forward index and using getIndex. -- {-# INLINE getIndexRev #-} getIndexRev :: -- (MonadIO m, Storable a) => Ring a -> Int -> m a getIndexRev = undefined ------------------------------------------------------------------------------- -- Size ------------------------------------------------------------------------------- -- | /O(1)/ Get the byte length of the array. -- -- /Unimplemented/ {-# INLINE byteLength #-} byteLength :: Ring a -> Int byteLength = undefined -- | /O(1)/ Get the length of the array i.e. the number of elements in the -- array. -- -- Note that 'byteLength' is less expensive than this operation, as 'length' -- involves a costly division operation. -- -- /Unimplemented/ {-# INLINE length #-} length :: -- forall a. Storable a => Ring a -> Int length = undefined -- | Get the total capacity of an array. An array may have space reserved -- beyond the current used length of the array. -- -- /Pre-release/ {-# INLINE byteCapacity #-} byteCapacity :: Ring a -> Int byteCapacity = undefined -- | The remaining capacity in the array for appending more elements without -- reallocation. -- -- /Pre-release/ {-# INLINE bytesFree #-} bytesFree :: Ring a -> Int bytesFree = undefined ------------------------------------------------------------------------------- -- Unfolds ------------------------------------------------------------------------------- -- XXX We can read the ring in a loop and use "take" to restrict the number of -- elements to be taken. -- -- | Read n elements from the ring starting at the supplied ring head. If n is -- more than the ring size it keeps reading the ring in a circular fashion. -- -- If the ring is not full the user must ensure than n is less than or equal to -- the number of valid elements in the ring. -- -- /Internal/ {-# INLINE_NORMAL read #-} read :: forall m a. (MonadIO m, Storable a) => Unfold m (Ring a, Ptr a, Int) a read = Unfold step return where step (rb, rh, n) = do if n <= 0 then do liftIO $ touchForeignPtr (ringStart rb) return Stop else do x <- liftIO $ peek rh let rh1 = advance rb rh return $ Yield x (rb, rh1, n - 1) -- | Unfold a ring array into a stream in reverse order. -- -- /Unimplemented/ {-# INLINE_NORMAL readRev #-} readRev :: -- forall m a. (MonadIO m, Storable a) => Unfold m (MutArray a) a readRev = undefined ------------------------------------------------------------------------------- -- Stream of arrays ------------------------------------------------------------------------------- -- XXX Move this module to a lower level Ring/Type module and move ringsOf to a -- higher level ring module where we can import "scan". -- | @ringsOf n stream@ groups the input stream into a stream of -- ring arrays of size n. Each ring is a sliding window of size n. -- -- /Unimplemented/ {-# INLINE_NORMAL ringsOf #-} ringsOf :: -- forall m a. (MonadIO m, Storable a) => Int -> Stream m a -> Stream m (MutArray a) ringsOf = undefined -- Stream.scan (writeN n) ------------------------------------------------------------------------------- -- Casting ------------------------------------------------------------------------------- -- | Cast an array having elements of type @a@ into an array having elements of -- type @b@. The array size must be a multiple of the size of type @b@. -- -- /Unimplemented/ -- castUnsafe :: Ring a -> Ring b castUnsafe = undefined -- | Cast an @Array a@ into an @Array Word8@. -- -- /Unimplemented/ -- asBytes :: Ring a -> Ring Word8 asBytes = castUnsafe -- | Cast an array having elements of type @a@ into an array having elements of -- type @b@. The length of the array should be a multiple of the size of the -- target element otherwise 'Nothing' is returned. -- -- /Pre-release/ -- cast :: forall a b. Storable b => Ring a -> Maybe (Ring b) cast arr = let len = byteLength arr r = len `mod` STORABLE_SIZE_OF(b) in if r /= 0 then Nothing else Just $ castUnsafe arr ------------------------------------------------------------------------------- -- Equality ------------------------------------------------------------------------------- -- XXX remove all usage of unsafeInlineIO -- -- | Like 'unsafeEqArray' but compares only N bytes instead of entire length of -- the ring buffer. This is unsafe because the ringHead Ptr is not checked to -- be in range. {-# INLINE unsafeEqArrayN #-} unsafeEqArrayN :: Ring a -> Ptr a -> A.Array a -> Int -> Bool unsafeEqArrayN Ring{..} rh A.Array{..} nBytes | nBytes < 0 = error "unsafeEqArrayN: n should be >= 0" | nBytes == 0 = True | otherwise = unsafeInlineIO $ check (castPtr rh) 0 where w8Contents = arrContents check p i = do (relem :: Word8) <- peek p aelem <- peekWith w8Contents i if relem == aelem then go (p `plusPtr` 1) (i + 1) else return False go p i | i == nBytes = return True | castPtr p == ringBound = go (castPtr (unsafeForeignPtrToPtr ringStart)) i | castPtr p == rh = touchForeignPtr ringStart >> return True | otherwise = check p i -- XXX This is not modular. We should probably just convert the array and the -- ring buffer to streams and compare the two streams. Need to check perf -- though. -- | Byte compare the entire length of ringBuffer with the given array, -- starting at the supplied ringHead pointer. Returns true if the Array and -- the ringBuffer have identical contents. -- -- This is unsafe because the ringHead Ptr is not checked to be in range. The -- supplied array must be equal to or bigger than the ringBuffer, ARRAY BOUNDS -- ARE NOT CHECKED. {-# INLINE unsafeEqArray #-} unsafeEqArray :: Ring a -> Ptr a -> A.Array a -> Bool unsafeEqArray Ring{..} rh A.Array{..} = unsafeInlineIO $ check (castPtr rh) 0 where w8Contents = arrContents check p i = do (relem :: Word8) <- peek p aelem <- peekWith w8Contents i if relem == aelem then go (p `plusPtr` 1) (i + 1) else return False go p i | castPtr p == ringBound = go (castPtr (unsafeForeignPtrToPtr ringStart)) i | castPtr p == rh = touchForeignPtr ringStart >> return True | otherwise = check p i ------------------------------------------------------------------------------- -- Folding ------------------------------------------------------------------------------- -- XXX We can unfold it into a stream and fold the stream instead. -- XXX use MonadIO -- -- | Fold the buffer starting from ringStart up to the given 'Ptr' using a pure -- step function. This is useful to fold the items in the ring when the ring is -- not full. The supplied pointer is usually the end of the ring. -- -- Unsafe because the supplied Ptr is not checked to be in range. {-# INLINE unsafeFoldRing #-} unsafeFoldRing :: forall a b. Storable a => Ptr a -> (b -> a -> b) -> b -> Ring a -> b unsafeFoldRing ptr f z Ring{..} = let !res = unsafeInlineIO $ withForeignPtr ringStart $ \p -> go z p ptr in res where go !acc !p !q | p == q = return acc | otherwise = do x <- peek p go (f acc x) (PTR_NEXT(p,a)) q -- XXX Can we remove MonadIO here? withForeignPtrM :: MonadIO m => ForeignPtr a -> (Ptr a -> m b) -> m b withForeignPtrM fp fn = do r <- fn $ unsafeForeignPtrToPtr fp liftIO $ touchForeignPtr fp return r -- | Like unsafeFoldRing but with a monadic step function. {-# INLINE unsafeFoldRingM #-} unsafeFoldRingM :: forall m a b. (MonadIO m, Storable a) => Ptr a -> (b -> a -> m b) -> b -> Ring a -> m b unsafeFoldRingM ptr f z Ring {..} = withForeignPtrM ringStart $ \x -> go z x ptr where go !acc !start !end | start == end = return acc | otherwise = do let !x = unsafeInlineIO $ peek start acc1 <- f acc x go acc1 (PTR_NEXT(start,a)) end -- | Fold the entire length of a ring buffer starting at the supplied ringHead -- pointer. Assuming the supplied ringHead pointer points to the oldest item, -- this would fold the ring starting from the oldest item to the newest item in -- the ring. -- -- Note, this will crash on ring of 0 size. -- {-# INLINE unsafeFoldRingFullM #-} unsafeFoldRingFullM :: forall m a b. (MonadIO m, Storable a) => Ptr a -> (b -> a -> m b) -> b -> Ring a -> m b unsafeFoldRingFullM rh f z rb@Ring {..} = withForeignPtrM ringStart $ \_ -> go z rh where go !acc !start = do let !x = unsafeInlineIO $ peek start acc' <- f acc x let ptr = advance rb start if ptr == rh then return acc' else go acc' ptr -- | Fold @Int@ items in the ring starting at @Ptr a@. Won't fold more -- than the length of the ring. -- -- Note, this will crash on ring of 0 size. -- {-# INLINE unsafeFoldRingNM #-} unsafeFoldRingNM :: forall m a b. (MonadIO m, Storable a) => Int -> Ptr a -> (b -> a -> m b) -> b -> Ring a -> m b unsafeFoldRingNM count rh f z rb@Ring {..} = withForeignPtrM ringStart $ \_ -> go count z rh where go 0 acc _ = return acc go !n !acc !start = do let !x = unsafeInlineIO $ peek start acc' <- f acc x let ptr = advance rb start if ptr == rh || n == 0 then return acc' else go (n - 1) acc' ptr data Tuple4' a b c d = Tuple4' !a !b !c !d deriving Show -- | Like slidingWindow but also provides the entire ring contents as an Array. -- The array reflects the state of the ring after inserting the incoming -- element. -- -- IMPORTANT NOTE: The ring is mutable, therefore, the result of @(m (Array -- a))@ action depends on when it is executed. It does not capture the sanpshot -- of the ring at a particular time. {-# INLINE slidingWindowWith #-} slidingWindowWith :: forall m a b. (MonadIO m, Storable a, Unbox a) => Int -> Fold m ((a, Maybe a), m (MutArray a)) b -> Fold m a b slidingWindowWith n (Fold step1 initial1 extract1) = Fold step initial extract where initial = do if n <= 0 then error "Window size must be > 0" else do r <- initial1 (rb, rh) <- liftIO $ new n return $ case r of Partial s -> Partial $ Tuple4' rb rh (0 :: Int) s Done b -> Done b toArray foldRing rb rh = do arr <- liftIO $ MA.newPinned n let snoc' b a = liftIO $ MA.snocUnsafe b a foldRing rh snoc' arr rb step (Tuple4' rb rh i st) a | i < n = do rh1 <- liftIO $ unsafeInsert rb rh a liftIO $ touchForeignPtr (ringStart rb) let action = toArray unsafeFoldRingM rb (PTR_NEXT(rh, a)) r <- step1 st ((a, Nothing), action) return $ case r of Partial s -> Partial $ Tuple4' rb rh1 (i + 1) s Done b -> Done b | otherwise = do old <- liftIO $ peek rh rh1 <- liftIO $ unsafeInsert rb rh a liftIO $ touchForeignPtr (ringStart rb) r <- step1 st ((a, Just old), toArray unsafeFoldRingFullM rb rh1) return $ case r of Partial s -> Partial $ Tuple4' rb rh1 (i + 1) s Done b -> Done b extract (Tuple4' _ _ _ st) = extract1 st -- | @slidingWindow collector@ is an incremental sliding window -- fold that does not require all the intermediate elements in a computation. -- This maintains @n@ elements in the window, when a new element comes it slides -- out the oldest element and the new element along with the old element are -- supplied to the collector fold. -- -- The 'Maybe' type is for the case when initially the window is filling and -- there is no old element. -- {-# INLINE slidingWindow #-} slidingWindow :: forall m a b. (MonadIO m, Storable a, Unbox a) => Int -> Fold m (a, Maybe a) b -> Fold m a b slidingWindow n f = slidingWindowWith n (lmap fst f)