```{-# LANGUAGE NoImplicitPrelude #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE FlexibleContexts #-}
module Synthesizer.Generic.Analysis where

import qualified Synthesizer.State.Analysis as Ana

import qualified Synthesizer.Generic.Signal as SigG
import qualified Synthesizer.Generic.Signal2 as SigG2

-- import qualified Synthesizer.Plain.Control as Ctrl

-- import qualified Algebra.Module                as Module
-- import qualified Algebra.Transcendental        as Trans
import qualified Algebra.Algebraic             as Algebraic
-- import qualified Algebra.RealField             as RealField
import qualified Algebra.Field                 as Field
import qualified Algebra.Real                  as Real
import qualified Algebra.Ring                  as Ring

import qualified Algebra.NormedSpace.Maximum   as NormedMax
import qualified Algebra.NormedSpace.Euclidean as NormedEuc
import qualified Algebra.NormedSpace.Sum       as NormedSum

-- import qualified Data.Array as Array

-- import qualified Data.IntMap as IntMap

-- import Algebra.Module((*>))

-- import Data.Array (accumArray)

import qualified Prelude as P
import PreludeBase
import NumericPrelude

{- * Notions of volume -}

{- |
Volume based on Manhattan norm.
-}
volumeMaximum :: (Real.C y, SigG.Read sig y) => sig y -> y
volumeMaximum =
Ana.volumeMaximum . SigG.toState

{- |
Volume based on Energy norm.
-}
volumeEuclidean :: (Algebraic.C y, SigG.Read sig y) => sig y -> y
volumeEuclidean =
Ana.volumeEuclidean . SigG.toState

volumeEuclideanSqr :: (Field.C y, SigG.Read sig y) => sig y -> y
volumeEuclideanSqr =
Ana.volumeEuclideanSqr . SigG.toState

{- |
Volume based on Sum norm.
-}
volumeSum :: (Field.C y, Real.C y, SigG.Read sig y) => sig y -> y
volumeSum =
Ana.volumeSum . SigG.toState

{- |
Volume based on Manhattan norm.
-}
volumeVectorMaximum ::
(NormedMax.C y yv, Ord y, SigG.Read sig yv) =>
sig yv -> y
volumeVectorMaximum =
Ana.volumeVectorMaximum . SigG.toState

{- |
Volume based on Energy norm.
-}
volumeVectorEuclidean ::
(Algebraic.C y, NormedEuc.C y yv, SigG.Read sig yv) =>
sig yv -> y
volumeVectorEuclidean =
Ana.volumeVectorEuclidean . SigG.toState

volumeVectorEuclideanSqr ::
(Field.C y, NormedEuc.Sqr y yv, SigG.Read sig yv) =>
sig yv -> y
volumeVectorEuclideanSqr =
Ana.volumeVectorEuclideanSqr . SigG.toState

{- |
Volume based on Sum norm.
-}
volumeVectorSum ::
(NormedSum.C y yv, Field.C y, SigG.Read sig yv) =>
sig yv -> y
volumeVectorSum =
Ana.volumeVectorSum . SigG.toState

{- |
Compute minimum and maximum value of the stream the efficient way.
Input list must be non-empty and finite.
-}
bounds :: (Ord y, SigG.Read sig y) => sig y -> (y,y)
bounds =
Ana.bounds . SigG.toState

{- * Miscellaneous -}

{-
histogram:
length x = sum (histogramDiscrete x)

units:
1) histogram (amplify k x) = timestretch k (amplify (1/k) (histogram x))
2) histogram (timestretch k x) = amplify k (histogram x)
timestretch: k -> (s -> V) -> (k*s -> V)
amplify:     k -> (s -> V) -> (s -> k*V)
histogram:   (a -> b) -> (a^ia*b^ib -> a^ja*b^jb)
x:           (s -> V)
1) => (s^ia*(k*V)^ib -> s^ja*(k*V)^jb)
= (s^ia*V^ib*k -> s^ja*V^jb/k)
=> ib=1, jb=-1
2) => ((k*s)^ia*V^ib -> (k*s)^ja*V^jb)
= (s^ia*V^ib -> s^ja*V^jb*k)
=> ia=0, ja=1
histogram:   (s -> V) -> (V -> s/V)
histogram':
integral (histogram' x) = integral x
histogram' (amplify k x) = timestretch k (histogram' x)
histogram' (timestretch k x) = amplify k (histogram' x)
-> this does only apply if we slice the area horizontally
and sum the slice up at each level,
we must also restrict to the positive values,
this is not quite the usual histogram
-}

{-
{- |
Input list must be finite.
List is scanned twice, but counting may be faster.
-}
histogramDiscreteArray :: sig Int -> (Int, sig Int)
histogramDiscreteArray [] =
(error "histogramDiscreteArray: no bounds found", [])
histogramDiscreteArray x =
let hist =
accumArray (+) zero
(bounds x) (attachOne x)
in  (fst (Array.bounds hist), Array.elems hist)

{- |
Input list must be finite.
If the input signal is empty, the offset is @undefined@.
List is scanned twice, but counting may be faster.
The sum of all histogram values is one less than the length of the signal.
-}
histogramLinearArray :: RealField.C y => sig y -> (Int, sig y)
histogramLinearArray [] =
(error "histogramLinearArray: no bounds found", [])
histogramLinearArray [x] = (floor x, [])
histogramLinearArray x =
let (xMin,xMax) = bounds x
hist =
accumArray (+) zero
(floor xMin, floor xMax)
(meanValues x)
in  (fst (Array.bounds hist), Array.elems hist)

{- |
Input list must be finite.
If the input signal is empty, the offset is @undefined@.
List is scanned once, counting may be slower.
-}
histogramDiscreteIntMap :: sig Int -> (Int, sig Int)
histogramDiscreteIntMap [] =
(error "histogramDiscreteIntMap: no bounds found", [])
histogramDiscreteIntMap x =
let hist = IntMap.fromListWith (+) (attachOne x)
in  case IntMap.toAscList hist of
[] -> error "histogramDiscreteIntMap: the list was non-empty before processing ..."
concat (zipWith
(\(i0,_) (i1,f1) -> replicate (i1-i0-1) zero ++ [f1])
fAll fs))

histogramLinearIntMap :: RealField.C y => sig y -> (Int, sig y)
histogramLinearIntMap [] =
(error "histogramLinearIntMap: no bounds found", [])
histogramLinearIntMap [x] = (floor x, [])
histogramLinearIntMap x =
let hist = IntMap.fromListWith (+) (meanValues x)
-- we can rely on the fact that the keys are contiguous
(startKey:_, elems) = unzip (IntMap.toAscList hist)
in  (startKey, elems)
-- This doesn't work, due to a bug in IntMap of GHC-6.4.1
-- in  (head (IntMap.keys hist), IntMap.elems hist)
-}

{-
The bug in IntMap GHC-6.4.1 is:

*Synthesizer.Plain.Analysis> IntMap.keys \$ IntMap.fromList \$ [(0,0),(-1,-1::Int)]
[0,-1]
*Synthesizer.Plain.Analysis> IntMap.elems \$ IntMap.fromList \$ [(0,0),(-1,-1::Int)]
[0,-1]
*Synthesizer.Plain.Analysis> IntMap.assocs \$ IntMap.fromList \$ [(0,0),(-1,-1::Int)]
[(0,0),(-1,-1)]

The bug has gone in IntMap as shipped with GHC-6.6.
-}

{-
histogramIntMap :: (RealField.C y, SigG.Read sig y) =>
y -> sig y -> (Int, sig Int)
histogramIntMap binsPerUnit =
histogramDiscreteIntMap . quantize binsPerUnit

quantize :: (RealField.C y, SigG.Transform sig y) =>
y -> sig y -> sig Int
quantize binsPerUnit = SigG.map (floor . (binsPerUnit*))

attachOne :: (Sample.C i) => sig i -> sig (i,Int)
attachOne = SigG.map (\i -> (i,one))

meanValues ::
(RealField.C y, SigG.Read sig y) => sig y -> [(Int,y)]
meanValues x = concatMap spread (zip x (tail x))

(RealField.C y, SigG.Read sig y) => (y,y) -> [(Int,y)]
let (l,r) = if l0<=r0 then (l0,r0) else (r0,l0)
(li,lf) = splitFraction l
(ri,rf) = splitFraction r
k = recip (r-l)
nodes =
(li,k*(1-lf)) :
zip [li+1 ..] (replicate (ri-li-1) k) ++
(ri, k*rf) :
[]
in  if li==ri
then [(li,one)]
else nodes
-}

{- |
Requires finite length.
This is identical to the arithmetic mean.
-}
directCurrentOffset ::
(Field.C y, SigG.Read sig y) => sig y -> y
directCurrentOffset = average

scalarProduct ::
(Ring.C y, SigG.Read sig y) => sig y -> sig y -> y
scalarProduct xs ys =
Ana.scalarProduct (SigG.toState xs) (SigG.toState ys)

{- |
'directCurrentOffset' must be non-zero.
-}
centroid :: (Field.C y, SigG.Read sig y) => sig y -> y
centroid =
Ana.centroid . SigG.toState

average :: (Field.C y, SigG.Read sig y) => sig y -> y
average =
Ana.average . SigG.toState

rectify :: (Real.C y, SigG.Transform sig y) => sig y -> sig y
rectify = SigG.map abs

{- |
Detects zeros (sign changes) in a signal.
This can be used as a simple measure of the portion
of high frequencies or noise in the signal.
It ca be used as voiced\/unvoiced detector in a vocoder.

@zeros x !! n@ is @True@ if and only if
@(x !! n >= 0) \/= (x !! (n+1) >= 0)@.
The result will be one value shorter than the input.
-}
zeros :: (Ord y, Ring.C y, SigG2.Transform sig y Bool) =>
sig y -> sig Bool
zeros =

{- |
Detect thresholds with a hysteresis.
-}
flipFlopHysteresis :: (Ord y, SigG2.Transform sig y Bool) =>
(y,y) -> Bool -> sig y -> sig Bool
flipFlopHysteresis (lower,upper) =
SigG2.scanL
(\state x ->
if state
then not(x<lower)
else x>upper)

{-
{- |
Almost naive implementation of the chirp transform,
a generalization of the Fourier transform.