{-# LANGUAGE NoImplicitPrelude #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE FlexibleInstances #-} {- | Copyright : (c) Henning Thielemann 2008 License : GPL Maintainer : synthesizer@henning-thielemann.de Stability : provisional Portability : requires multi-parameter type classes First order lowpass and highpass with complex valued feedback. The complex feedback allows resonance. -} module Synthesizer.Plain.Filter.Recursive.FirstOrderComplex ( Parameter, parameter, parameterFromPeakWidth, parameterFromPeakToDCRatio, step, modifierInit, modifier, causal, runInit, run, ) where import Synthesizer.Plain.Filter.Recursive (Pole(..)) import qualified Synthesizer.Plain.Signal as Sig import qualified Synthesizer.Plain.Modifier as Modifier import qualified Synthesizer.Causal.Process as Causal import qualified Synthesizer.Interpolation.Class as Interpol import qualified Synthesizer.Basic.ComplexModule as CM import qualified Number.Complex as Complex import qualified Algebra.Module as Module import qualified Algebra.Transcendental as Trans import qualified Algebra.Algebraic as Algebraic import qualified Algebra.Field as Field import qualified Algebra.Ring as Ring import qualified Algebra.Additive as Additive -- import Algebra.Module((*>)) import Control.Monad.Trans.State (State, state, ) import qualified Prelude as P import NumericPrelude.Base import NumericPrelude.Numeric data Parameter a = Parameter {c, amp :: !(Complex.T a)} deriving Show instance Interpol.C a v => Interpol.C a (Parameter v) where {-# INLINE scaleAndAccumulate #-} scaleAndAccumulate = Interpol.makeMac2 Parameter c amp {- y0 = u0 + k * cis w * y1 transfer function: 1/(1 - k * cis w * z) frequency 0 amplified by @recip (1 - k * cis w)@. resonance frequency amplified by 1+k+k^2+..., which equals @recip (1-k)@. resonance frequency + half sample rate is amplified by @recip (1+k)@. -} {-| The internal parameters are computed such that: * At the resonance frequency the filter amplifies by the factor @resonance@ with no phase shift. * At resonance frequency plus half sample rate the filter amplifies by facter @recip $ 2 - recip resonance@ with no phase shift, but you cannot observe this immediately, because it is outside the Nyquist band. -} {-# INLINE parameter #-} parameter :: Trans.C a => Pole a -> Parameter a parameter (Pole resonance frequency) = let cisw = Complex.cis (2*pi*frequency) k = 1 - recip resonance kcisw = Complex.scale k cisw in Parameter kcisw one {- Let resonance be the ratio of the resonance amplification to the amplification at another frequency, encoded by z. resonance = abs(1 - k * cis w * z) / (1 - k) Solution: Substitute @cis w * z@ by @cis a@ and proceed as in parameterFromPeakToDCRatio. -} {-| The internal parameters are computed such that: * At the resonance frequency the filter amplifies by the factor @resonance@ with no phase shift. * At resonance frequency plus and minus band width the filter amplifies by facter 1 with a non-zero phase shift. -} {-# INLINE parameterFromPeakWidth #-} parameterFromPeakWidth :: Trans.C a => a -> Pole a -> Parameter a parameterFromPeakWidth width (Pole resonance frequency) = let cisw = Complex.cis (2*pi*frequency) k = solveRatio resonance (cos (2*pi*width)) kcisw = Complex.scale k cisw amp_ = Complex.fromReal ((1-k)*resonance) in Parameter kcisw amp_ {-| The internal parameters are computed such that: * At the resonance frequency the filter amplifies by the factor @resonance@ with a non-zero phase shift. * The filter amplifies the direct current (frequency zero) by factor 1 with no phase shift. * The real component is a lowpass, the imaginary component is a highpass. You can interpolate between them using other complex projections. -} {- If we want to interpret the resonance as ratio of the peak height to direct current amplification, we get: resonance = abs ((1 - k * cis w) / (1-k)) resonance^2 * (1-k)^2 = (1 - k * cis w) * (1 - k * cis (-w)) = 1 + k^2 - 2*k*cos w 0 = 1-resonance^2 + 2 * (resonance^2 - cos w) * k + (1-resonance^2) * k^2 0 = 1 + 2 * (resonance^2 - cos w) / (1-resonance^2) * k + k^2 -} {-# INLINE parameterFromPeakToDCRatio #-} parameterFromPeakToDCRatio :: Trans.C a => Pole a -> Parameter a parameterFromPeakToDCRatio (Pole resonance frequency) = let cisw = Complex.cis (2*pi*frequency) k = solveRatio resonance (Complex.real cisw) kcisw = Complex.scale k cisw amp_ = one - kcisw in Parameter kcisw amp_ solveRatio :: (Algebraic.C a) => a -> a -> a solveRatio resonance cosine = let r2 = resonance^2 p = (r2 - cosine) / (r2 - 1) {- no cancelation for p close to 1, that is, big resonance or cosine close to 1 -} in recip $ p + sqrt (p^2 - 1) {- solveRatioAnalytic :: (Algebraic.C a) => a -> a -> a solveRatioAnalytic resonance cosine = let r2 = resonance^2 p = (r2 - cosine) / (r2 - 1) in p - sqrt (p^2 - 1) -} {- | We use complex numbers as result types, since the particular filter type is determined by the parameter generator. -} type Result = Complex.T {-| Universal filter: Computes high pass, band pass, low pass in one go -} {-# INLINE step #-} step :: (Module.C a v) => Parameter a -> v -> State (Complex.T v) (Result v) step p u = state $ \s -> let y = CM.scale (amp p) u + CM.mul (c p) s in (y, y) -- in (Result (Complex.imag y) (Complex.real y), y) {-# INLINE modifierInit #-} modifierInit :: (Ring.C a, Module.C a v) => Modifier.Initialized (Complex.T v) (Complex.T v) (Parameter a) v (Result v) modifierInit = Modifier.Initialized id step {-# INLINE modifier #-} modifier :: (Ring.C a, Module.C a v) => Modifier.Simple (Complex.T v) (Parameter a) v (Result v) modifier = Sig.modifierInitialize modifierInit zero {-# INLINE causal #-} causal :: (Ring.C a, Module.C a v) => Causal.T (Parameter a, v) (Result v) causal = Causal.fromSimpleModifier modifier {-# INLINE runInit #-} runInit :: (Ring.C a, Module.C a v) => Complex.T v -> Sig.T (Parameter a) -> Sig.T v -> Sig.T (Result v) runInit = Sig.modifyModulatedInit modifierInit {-# INLINE run #-} run :: (Ring.C a, Module.C a v) => Sig.T (Parameter a) -> Sig.T v -> Sig.T (Result v) run = runInit zero