{-# LANGUAGE NoImplicitPrelude #-} module Synthesizer.Plain.Interpolation ( T, func, offset, number, zeroPad, constantPad, cyclicPad, extrapolationPad, single, multiRelative, multiRelativeZeroPad, multiRelativeConstantPad, multiRelativeCyclicPad, multiRelativeExtrapolationPad, multiRelativeZeroPadConstant, multiRelativeZeroPadLinear, multiRelativeZeroPadCubic, constant, linear, cubic, piecewise, function, Interpolation.Margin, Interpolation.margin, -- for testing singleRec, ) where import qualified Synthesizer.Interpolation as Interpolation import Synthesizer.Interpolation (T, offset, number, ) import Synthesizer.Interpolation.Module (constant, linear, cubic, piecewise, function, ) import qualified Synthesizer.State.Signal as SigS import qualified Synthesizer.Plain.Signal as Sig import qualified Synthesizer.Plain.Filter.NonRecursive as FiltNR import Control.Monad (guard, ) import qualified Data.List.HT as ListHT import Data.Maybe (fromMaybe) import qualified Algebra.Module as Module import qualified Algebra.RealField as RealField import qualified Algebra.RealRing as RealRing import qualified Algebra.Ring as Ring import qualified Algebra.Additive as Additive import NumericPrelude.Numeric import NumericPrelude.Base {-* Interpolation with various padding methods -} zeroPad :: (RealRing.C t) => (T t y -> t -> Sig.T y -> a) -> y -> T t y -> t -> Sig.T y -> a zeroPad interpolate z ip phase x = let (phInt, phFrac) = splitFraction phase in interpolate ip phFrac (FiltNR.delayPad z (offset ip - phInt) (x ++ repeat z)) constantPad :: (RealRing.C t) => (T t y -> t -> Sig.T y -> a) -> T t y -> t -> Sig.T y -> a constantPad interpolate ip phase x = let (phInt, phFrac) = splitFraction phase xPad = do (xFirst,_) <- ListHT.viewL x (xBody,xLast) <- ListHT.viewR x return (FiltNR.delayPad xFirst (offset ip - phInt) (xBody ++ repeat xLast)) in interpolate ip phFrac (fromMaybe [] xPad) {- | Only for finite input signals. -} cyclicPad :: (RealRing.C t) => (T t y -> t -> Sig.T y -> a) -> T t y -> t -> Sig.T y -> a cyclicPad interpolate ip phase x = let (phInt, phFrac) = splitFraction phase in interpolate ip phFrac (drop (mod (phInt - offset ip) (length x)) (cycle x)) {- | The extrapolation may miss some of the first and some of the last points -} extrapolationPad :: (RealRing.C t) => (T t y -> t -> Sig.T y -> a) -> T t y -> t -> Sig.T y -> a extrapolationPad interpolate ip phase = interpolate ip (phase - fromIntegral (offset ip)) {- This example shows pikes, although there shouldn't be any: plotList (take 100 $ interpolate (Zero (0::Double)) ipCubic (-0.9::Double) (repeat 0.03) [1,0,1,0.8]) -} {-* Interpolation of multiple values with various padding methods -} func :: T t y -> t -> Sig.T y -> y func ip phase = Interpolation.func ip phase . SigS.fromList skip :: (RealRing.C t) => T t y -> (t, Sig.T y) -> (t, Sig.T y) skip ip (phase0, x0) = let (n, frac) = splitFraction phase0 (m, x1) = Sig.dropMarginRem (number ip) n x0 in (fromIntegral m + frac, x1) single :: (RealRing.C t) => T t y -> t -> Sig.T y -> y single ip phase0 x0 = uncurry (func ip) $ skip ip (phase0, x0) -- curry (uncurry (func ip) . skip ip) {- GNUPlot.plotFunc [] (GNUPlot.linearScale 1000 (0,2)) (\t -> single linear (t::Double) [0,4,1::Double]) -} -- | alternative implementation of 'single' singleRec :: (Ord t, Ring.C t) => T t y -> t -> Sig.T y -> y singleRec ip phase x = -- check if we are leaving the current interval maybe (func ip phase x) (singleRec ip (phase - 1)) (do (_,xs) <- ListHT.viewL x guard (phase >= 1 && Sig.lengthAtLeast (number ip) xs) return xs) {-* Interpolation of multiple values with various padding methods -} {- | All values of frequency control must be non-negative. -} multiRelative :: (RealRing.C t) => T t y -> t -> Sig.T y -> Sig.T t -> Sig.T y multiRelative ip phase0 x0 = map (uncurry (func ip)) . scanl (\(phase,x) freq -> skip ip (phase + freq, x)) (skip ip (phase0,x0)) multiRelativeZeroPad :: (RealRing.C t) => y -> T t y -> t -> Sig.T t -> Sig.T y -> Sig.T y multiRelativeZeroPad z ip phase fs x = zeroPad multiRelative z ip phase x fs multiRelativeConstantPad :: (RealRing.C t) => T t y -> t -> Sig.T t -> Sig.T y -> Sig.T y multiRelativeConstantPad ip phase fs x = constantPad multiRelative ip phase x fs multiRelativeCyclicPad :: (RealRing.C t) => T t y -> t -> Sig.T t -> Sig.T y -> Sig.T y multiRelativeCyclicPad ip phase fs x = cyclicPad multiRelative ip phase x fs {- | The extrapolation may miss some of the first and some of the last points -} multiRelativeExtrapolationPad :: (RealRing.C t) => T t y -> t -> Sig.T t -> Sig.T y -> Sig.T y multiRelativeExtrapolationPad ip phase fs x = extrapolationPad multiRelative ip phase x fs {- This example shows pikes, although there shouldn't be any: plotList (take 100 $ interpolate (Zero (0::Double)) ipCubic (-0.9::Double) (repeat 0.03) [1,0,1,0.8]) -} {-* All-in-one interpolation functions -} multiRelativeZeroPadConstant :: (RealRing.C t, Additive.C y) => t -> Sig.T t -> Sig.T y -> Sig.T y multiRelativeZeroPadConstant = multiRelativeZeroPad zero constant multiRelativeZeroPadLinear :: (RealRing.C t, Module.C t y) => t -> Sig.T t -> Sig.T y -> Sig.T y multiRelativeZeroPadLinear = multiRelativeZeroPad zero linear multiRelativeZeroPadCubic :: (RealField.C t, Module.C t y) => t -> Sig.T t -> Sig.T y -> Sig.T y multiRelativeZeroPadCubic = multiRelativeZeroPad zero cubic