{-# LANGUAGE NoImplicitPrelude #-} {- | See "Synthesizer.Generic.Piece". -} module Synthesizer.State.Piece ( T, run, step, linear, exponential, cosine, halfSine, cubic, FlatPosition(..), ) where import qualified Synthesizer.Piecewise as Piecewise import Synthesizer.Piecewise (FlatPosition (FlatLeft, FlatRight)) import qualified Synthesizer.State.Control as Ctrl import qualified Synthesizer.State.Signal as Sig import Synthesizer.State.Displacement (raise) import qualified Algebra.Transcendental as Trans import qualified Algebra.RealRing as RealRing import qualified Algebra.Field as Field import NumericPrelude.Numeric import NumericPrelude.Base {-# INLINE run #-} run :: (RealRing.C a) => Piecewise.T a a (a -> Sig.T a) -> Sig.T a run xs = Sig.concat $ zipWith (\(n, t) (Piecewise.PieceData c yi0 yi1 d) -> Sig.take n $ Piecewise.computePiece c yi0 yi1 d t) (Piecewise.splitDurations $ map Piecewise.pieceDur xs) xs type T a = Piecewise.Piece a a (a {- fractional start time -} -> Sig.T a) {-# INLINE step #-} step :: T a step = Piecewise.pieceFromFunction $ \ y0 _y1 _d _t0 -> Ctrl.constant y0 {-# INLINE linear #-} linear :: (Field.C a) => T a linear = Piecewise.pieceFromFunction $ \ y0 y1 d t0 -> let s = (y1-y0)/d in Ctrl.linear s (y0-t0*s) {-# INLINE exponential #-} exponential :: (Trans.C a) => a -> T a exponential saturation = Piecewise.pieceFromFunction $ \ y0 y1 d t0 -> let y0' = y0-saturation y1' = y1-saturation yd = y0'/y1' in raise saturation (Ctrl.exponential (d / log yd) (y0' * yd**(t0/d))) {-# INLINE cosine #-} cosine :: (Trans.C a) => T a cosine = Piecewise.pieceFromFunction $ \ y0 y1 d t0 -> Sig.map (\y -> ((1+y)*y0+(1-y)*y1)/2) (Ctrl.cosine t0 (t0+d)) {- | > Graphics.Gnuplot.Simple.plotList [] $ Sig.toList $ Piece.run $ 1 |# (10.9, Piece.halfSine FlatRight) #| 2 -} {-# INLINE halfSine #-} halfSine :: (Trans.C a) => FlatPosition -> T a halfSine FlatLeft = Piecewise.pieceFromFunction $ \ y0 y1 d t0 -> Sig.map (\y -> y*y0 + (1-y)*y1) (Ctrl.cosine t0 (t0+2*d)) halfSine FlatRight = Piecewise.pieceFromFunction $ \ y0 y1 d t0 -> Sig.map (\y -> (1+y)*y0 - y*y1) (Ctrl.cosine (t0-d) (t0+d)) {-# INLINE cubic #-} cubic :: (Field.C a) => a -> a -> T a cubic yd0 yd1 = Piecewise.pieceFromFunction $ \ y0 y1 d t0 -> Ctrl.cubicHermite (t0,(y0,yd0)) (t0+d,(y1,yd1))