{-# LANGUAGE NoImplicitPrelude #-} {-# LANGUAGE FlexibleContexts #-} {- | Copyright : (c) Henning Thielemann 2009 License : GPL Maintainer : synthesizer@henning-thielemann.de Stability : provisional Portability : requires multi-parameter type classes -} module Synthesizer.Dimensional.Causal.Oscillator ( {- static, staticAntiAlias, -} freqMod, freqModAntiAlias, phaseMod, phaseFreqMod, shapeMod, shapeFreqMod, {- staticSample, freqModSample, -} -- shapeFreqModSample, shapeFreqModFromSampledTone, shapePhaseFreqModFromSampledTone, ) where import qualified Synthesizer.Dimensional.Causal.Process as CausalD import qualified Synthesizer.Causal.Process as Causal import Control.Arrow ((<<^), (<<<), second, ) import qualified Synthesizer.Dimensional.Abstraction.HomogeneousGen as Hom import qualified Synthesizer.Dimensional.RateWrapper as SigP import qualified Synthesizer.Dimensional.Rate as Rate import qualified Synthesizer.Causal.Oscillator as Osci import qualified Synthesizer.Generic.Signal as SigG import qualified Synthesizer.Basic.WaveSmoothed as WaveSmooth import qualified Synthesizer.Basic.Wave as Wave import qualified Synthesizer.Basic.Phase as Phase -- import qualified Synthesizer.Dimensional.Straight.Signal as SigS -- import qualified Synthesizer.Dimensional.Cyclic.Signal as SigC -- import qualified Synthesizer.Dimensional.Amplitude.Signal as SigA import qualified Synthesizer.Dimensional.Process as Proc import Synthesizer.Dimensional.Process (toFrequencyScalar, ) import qualified Synthesizer.Interpolation as Interpolation import qualified Number.DimensionTerm as DN import qualified Algebra.DimensionTerm as Dim -- import Number.DimensionTerm ((&*&)) import qualified Algebra.RealField as RealField import qualified Algebra.Field as Field import qualified Algebra.Ring as Ring import NumericPrelude import PreludeBase as P {- {- | oscillator with a functional waveform with constant frequency -} {-# INLINE static #-} static :: (RealField.C t, Dim.C u) => Wave.T t y {- ^ waveform -} -> Phase.T t {- ^ start phase -} -> DN.T (Dim.Recip u) t {- ^ frequency -} -> Proc.T s u t (SigS.R s y) static wave phase = staticAuxHom (SigS.fromSamples . Osci.static wave phase) {- | oscillator with a functional waveform with constant frequency -} {-# INLINE staticAntiAlias #-} staticAntiAlias :: (RealField.C t, Dim.C u) => WaveSmooth.T t y {- ^ waveform -} -> Phase.T t {- ^ start phase -} -> DN.T (Dim.Recip u) t {- ^ frequency -} -> Proc.T s u t (SigS.R s y) staticAntiAlias wave phase = staticAuxHom (SigS.fromSamples . Osci.staticAntiAlias wave phase) -} {- | oscillator with a functional waveform with modulated frequency -} {-# INLINE freqMod #-} freqMod :: (RealField.C t, Dim.C u, Hom.C amp (Wave.T t) wave) => wave y {- ^ waveform -} -> Phase.T t {- ^ start phase -} -> Proc.T s u t (CausalD.T s (DN.T (Dim.Recip u) t) amp t y) freqMod wave phase = staticAuxHom wave $ \toFreq freqAmp w -> Osci.freqMod w phase <<< amplify (toFreq freqAmp) {- | oscillator with a functional waveform with modulated frequency -} {-# INLINE freqModAntiAlias #-} freqModAntiAlias :: (RealField.C t, Dim.C u, Hom.C amp (WaveSmooth.T t) wave) => wave y {- ^ waveform -} -> Phase.T t {- ^ start phase -} -> Proc.T s u t (CausalD.T s (DN.T (Dim.Recip u) t) amp t y) freqModAntiAlias wave phase = freqModAuxHom wave $ \scaleFreq freqAmp w -> Osci.freqModAntiAlias w phase <<< scaleFreq freqAmp {- | oscillator with modulated phase -} {-# INLINE phaseMod #-} phaseMod :: (RealField.C t, Dim.C u, Hom.C amp (Wave.T t) wave) => wave y {- ^ waveform -} -> DN.T (Dim.Recip u) t {- ^ frequency -} -> Proc.T s u t (CausalD.T s CausalD.Flat amp t y) phaseMod wave freq = staticAuxHom wave $ \toFreq CausalD.Flat w -> Osci.phaseMod w $ toFreq freq {- | oscillator with modulated shape -} {-# INLINE shapeMod #-} shapeMod :: (RealField.C t, Dim.C u) => (c -> Wave.T t y) {- ^ waveform -} -> Phase.T t {- ^ phase -} -> DN.T (Dim.Recip u) t {- ^ frequency -} -> Proc.T s u t (CausalD.T s CausalD.Flat CausalD.Flat c y) shapeMod wave phase freq = staticAux $ \toFreq CausalD.Flat -> Osci.shapeMod wave phase $ toFreq freq {- | oscillator with a functional waveform with modulated phase and frequency -} {-# INLINE phaseFreqMod #-} phaseFreqMod :: (RealField.C t, Dim.C u, Hom.C amp (Wave.T t) wave) => wave y {- ^ waveform -} -> Proc.T s u t (CausalD.T s (CausalD.Flat, DN.T (Dim.Recip u) t) amp (t,t) y) phaseFreqMod wave = freqModAuxHom wave $ \scaleFreq (CausalD.Flat, freqAmp) w -> Osci.phaseFreqMod w <<< second (scaleFreq freqAmp) {- | oscillator with both shape and frequency modulation -} {-# INLINE shapeFreqMod #-} shapeFreqMod :: (RealField.C t, Dim.C u) => (c -> Wave.T t y) {- ^ waveform -} -> Phase.T t {- ^ phase -} -> Proc.T s u t (CausalD.T s (CausalD.Flat, DN.T (Dim.Recip u) t) CausalD.Flat (c,t) y) shapeFreqMod wave phase = freqModAux $ \scaleFreq (CausalD.Flat, freqAmp) -> Osci.shapeFreqMod wave phase <<< second (scaleFreq freqAmp) {- We could decouple source time and target time which yields DN.T (Dim.Recip u0) t {- ^ source frequency -} -> SigP.T u0 (SigA.D v y (SigS.T sig)) y -> t -> Phase.T t -> Proc.T s u1 t ( CausalD.T s (DN.T (Dim.Div u0 u1) t, DN.T (Dim.Recip u1) t) CausalD.Flat (t,t) y) but most oftenly we do not need the conversion of the time scale. If we need it, we can use the frequency modulation function. We could measure the shape parameter in multiples of the source wave period. This would yield DN.T (Dim.Recip u0) t {- ^ source frequency -} -> SigP.T u0 (SigA.D v y (SigS.T sig)) y -> t -> Phase.T t -> Proc.T s u1 t ( CausalD.T s (DN.T (Dim.Recip u1) t, DN.T (Dim.Recip u1) t) CausalD.Flat (t,t) y) but this way, adjustment of the shape parameter is coupled to the source period. -} {-# INLINE shapeFreqModFromSampledTone #-} shapeFreqModFromSampledTone :: (RealField.C t, SigG.Transform storage yv, Dim.C u, Hom.C amp storage signal) => Interpolation.T t yv -> Interpolation.T t yv -> DN.T (Dim.Recip u) t {- ^ source frequency -} -> SigP.T u t signal yv -> t -> Phase.T t -> Proc.T s u t (CausalD.T s (CausalD.Flat, DN.T (Dim.Recip u) t) amp (t,t) yv) shapeFreqModFromSampledTone ipLeap ipStep srcFreq sampledTone shape0 phase = let (srcRate, srcSignal) = SigP.toSignal sampledTone (amp, samples) = Hom.unwrap srcSignal in do toFreq <- Proc.withParam toFrequencyScalar return $ CausalD.Cons $ \(CausalD.Flat, freqAmp) -> (amp, Osci.shapeFreqModFromSampledTone ipLeap ipStep (DN.divToScalar (Rate.toDimensionNumber srcRate) srcFreq) samples shape0 phase <<< second (amplify (toFreq freqAmp))) {-# INLINE shapePhaseFreqModFromSampledTone #-} shapePhaseFreqModFromSampledTone :: (RealField.C t, SigG.Transform storage yv, Dim.C u, Hom.C amp storage signal) => Interpolation.T t yv -> Interpolation.T t yv -> DN.T (Dim.Recip u) t {- ^ source frequency -} -> SigP.T u t signal yv -> t -> Phase.T t -> Proc.T s u t (CausalD.T s (CausalD.Flat, CausalD.Flat, DN.T (Dim.Recip u) t) amp (t,t,t) yv) shapePhaseFreqModFromSampledTone ipLeap ipStep srcFreq sampledTone shape0 phase = let (srcRate, srcSignal) = SigP.toSignal sampledTone (amp, samples) = Hom.unwrap srcSignal in do toFreq <- Proc.withParam toFrequencyScalar return $ CausalD.Cons $ \(CausalD.Flat, CausalD.Flat, freqAmp) -> (amp, Osci.shapePhaseFreqModFromSampledTone ipLeap ipStep (DN.divToScalar (Rate.toDimensionNumber srcRate) srcFreq) samples shape0 phase <<^ (\(s,p,f) -> (s,p, toFreq freqAmp * f))) {- Causal.packTriple ^<< second (amplify (toFreq freqAmp)) <<^ Causal.unpackTriple -} -- helper functions {-# INLINE freqModAux #-} freqModAux :: (Dim.C u, Field.C t) => ((DN.T (Dim.Recip u) t -> Causal.T t t) -> amp0 -> Causal.T yv0 yv1) -> Proc.T s u t (CausalD.T s1 amp0 CausalD.Flat yv0 yv1) freqModAux f = staticAux $ \toFreq amp -> f (amplify . toFreq) amp {-# INLINE staticAux #-} staticAux :: (Dim.C u, Field.C t) => ((DN.T (Dim.Recip u) t -> t) -> amp0 -> Causal.T yv0 yv1) -> Proc.T s u t (CausalD.T s1 amp0 CausalD.Flat yv0 yv1) staticAux f = do toFreq <- Proc.withParam toFrequencyScalar return $ CausalD.Cons $ \amp -> (CausalD.Flat, f toFreq amp) {-# INLINE freqModAuxHom #-} freqModAuxHom :: (Dim.C u, Field.C t, Hom.C amp1 waveStore wave) => wave y -> ((DN.T (Dim.Recip u) t -> Causal.T t t) -> amp0 -> waveStore y -> Causal.T yv0 yv1) -> Proc.T s u t (CausalD.T s1 amp0 amp1 yv0 yv1) freqModAuxHom wave f = staticAuxHom wave $ \toFreq amp0 w -> f (amplify . toFreq) amp0 w {-# INLINE staticAuxHom #-} staticAuxHom :: (Dim.C u, Field.C t, Hom.C amp1 waveStore wave) => wave y -> ((DN.T (Dim.Recip u) t -> t) -> amp0 -> waveStore y -> Causal.T yv0 yv1) -> Proc.T s u t (CausalD.T s1 amp0 amp1 yv0 yv1) staticAuxHom wave f = let (amp1, w) = Hom.plainUnwrap wave in do toFreq <- Proc.withParam toFrequencyScalar return $ CausalD.Cons $ \amp -> (amp1, f toFreq amp w) -- move to Causal.Filter amplify :: (Ring.C a) => a -> Causal.T a a amplify x = Causal.map (x Ring.*)