{-# LANGUAGE NoImplicitPrelude #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE Rank2Types #-} {-# LANGUAGE ForeignFunctionInterface #-} module Synthesizer.LLVM.Parameterized.Signal ( T(Cons), simple, map, mapSimple, zipWith, zipWithSimple, iterate, module Synthesizer.LLVM.Parameterized.Signal ) where import Synthesizer.LLVM.Parameterized.SignalPrivate import qualified Synthesizer.LLVM.CausalParameterized.ProcessPrivate as Causal import qualified Synthesizer.LLVM.Parameter as Param import qualified Synthesizer.LLVM.ConstantPiece as Const import qualified Synthesizer.LLVM.Random as Rnd import qualified Synthesizer.LLVM.Wave as Wave import qualified Synthesizer.LLVM.Frame as Frame import qualified Synthesizer.LLVM.Execution as Exec import qualified LLVM.Extra.MaybeContinuation as Maybe import qualified LLVM.Extra.ForeignPtr as ForeignPtr import qualified LLVM.Extra.Memory as Memory import LLVM.Extra.Control (whileLoop, ifThen, ) import qualified Synthesizer.LLVM.Storable.ChunkIterator as ChunkIt import qualified Data.StorableVector.Lazy.Pattern as SVP import qualified Data.StorableVector.Lazy as SVL import qualified Data.StorableVector as SV import qualified Data.StorableVector.Base as SVB import qualified Data.EventList.Relative.BodyTime as EventList import qualified Numeric.NonNegative.Chunky as Chunky import qualified Numeric.NonNegative.Wrapper as NonNeg import qualified Synthesizer.LLVM.Frame.Stereo as Stereo import qualified LLVM.Extra.Arithmetic as A import qualified LLVM.Extra.ScalarOrVector as SoV import LLVM.Extra.Arithmetic (advanceArrayElementPtr, ) import LLVM.Extra.Class (MakeValueTuple, ValueTuple, Undefined, undefTuple, ) import LLVM.Core as LLVM import qualified LLVM.Util.Loop as Loop import qualified Types.Data.Num as TypeNum import Control.Monad.HT ((<=<), ) import Control.Monad (liftM2, liftM3, when, ) import Control.Arrow ((^<<), ) import Control.Applicative (liftA2, ) import Control.Functor.HT (void, ) import qualified Algebra.Transcendental as Trans import qualified Algebra.RealField as RealField import qualified Algebra.Algebraic as Algebraic import qualified Algebra.Field as Field import qualified Algebra.Ring as Ring import qualified Algebra.Additive as Additive import Data.Word (Word8, Word32, ) import Data.Int (Int32, ) import Foreign.Storable.Tuple () import Foreign.Storable (Storable, ) import Foreign.Marshal.Array (advancePtr, ) import qualified Synthesizer.LLVM.Alloc as Alloc import Foreign.ForeignPtr (touchForeignPtr, withForeignPtr, ) import Foreign.Ptr (FunPtr, nullPtr, ) import Control.Exception (bracket, ) import qualified System.Unsafe as Unsafe import qualified Synthesizer.LLVM.Debug.Storable as DebugSt import qualified Synthesizer.LLVM.Debug.Counter as Counter import NumericPrelude.Numeric import NumericPrelude.Base hiding (and, iterate, map, zip, zipWith, ) -- for debugMain import qualified Control.Monad.Trans.Reader as R infixl 0 $# ($#) :: (Param.T p a -> b) -> (a -> b) ($#) f a = f (return a) mapAccum :: (Storable pnh, MakeValueTuple pnh, ValueTuple pnh ~ pnl, Memory.C pnl, Storable psh, MakeValueTuple psh, ValueTuple psh ~ psl, Memory.C psl, Memory.C s) => (forall r. pnl -> a -> s -> CodeGenFunction r (b,s)) -> (forall r. psl -> CodeGenFunction r s) -> Param.T p pnh -> Param.T p psh -> T p a -> T p b mapAccum f startS selectParamF selectParamS (Cons next start createIOContext deleteIOContext) = Cons (\(parameterF, parameter) (sa0,ss0) -> do (a,sa1) <- next parameter sa0 (b,ss1) <- Maybe.lift $ f (Param.value selectParamF parameterF) a ss0 return (b, (sa1,ss1))) (\(parameterF, parameter) -> liftM2 (,) (start parameter) (startS (Param.value selectParamS parameterF))) (\p -> do (ioContext, (nextParam, startParam)) <- createIOContext p return (ioContext, ((Param.get selectParamF p, nextParam), (Param.get selectParamS p, startParam)))) deleteIOContext zip :: T p a -> T p b -> T p (a,b) zip = liftA2 (,) -- * timeline edit {- | @tail empty@ generates the empty signal. -} tail :: T p a -> T p a tail (Cons next start createIOContext deleteIOContext) = Cons next (\(nextParameter, startParameter) -> do s0 <- start startParameter Maybe.resolve (next nextParameter s0) (return s0) (\(_a,s1) -> return s1)) (\p -> do (ioContext, (nextParam, startParam)) <- createIOContext p return (ioContext, (nextParam, (nextParam, startParam)))) deleteIOContext drop :: Param.T p Int -> T p a -> T p a drop n (Cons next start createIOContext deleteIOContext) = let n32 = fmap (fromIntegral :: Int -> Word32) n in Cons next (\(nextParameter, i0, startParameter) -> do s0 <- start startParameter (_, _, s3) <- whileLoop (valueOf True, Param.value n32 i0, s0) (\(cont,i1,_s1) -> A.and cont =<< A.cmp CmpGT i1 (value LLVM.zero)) (\(_cont,i1,s1) -> do (cont, s2) <- Maybe.resolve (next nextParameter s1) (return (valueOf False, s1)) (\(_a,s) -> return (valueOf True, s)) i2 <- A.dec i1 return (cont, i2, s2)) return s3) (\p -> do (ioContext, (nextParam, startParam)) <- createIOContext p return (ioContext, (nextParam, (nextParam, Param.get n32 p, startParam)))) deleteIOContext {- | Appending many signals is inefficient, since in cascadingly appended signals the parts are counted in an unary way. Concatenating infinitely many signals is impossible. If you want to concatenate a lot of signals, please render them to lazy storable vectors first. -} {- We might save a little space by using a union for the states of the first and the second signal generator. -} append :: (Loop.Phi a, Undefined a) => T p a -> T p a -> T p a append (Cons nextA startA createIOContextA deleteIOContextA) (Cons nextB startB createIOContextB deleteIOContextB) = Cons (\(parameterA, parameterB) (firstPart,(sa0,sb0)) -> Maybe.fromBool $ do (contA, (a,sa1)) <- ifThen firstPart (valueOf False, (undefTuple,sa0)) (Maybe.toBool $ nextA parameterA sa0) secondPart <- inv contA (contB, (b,sb1)) <- ifThen secondPart (valueOf True, (a,sb0)) (Maybe.toBool $ nextB parameterB sb0) return (contB, (b, (contA, (sa1,sb1))))) (\(parameterA, parameterB) -> fmap ((,) (valueOf True)) $ liftM2 (,) (startA parameterA) (startB parameterB)) (\p -> do (ca,(nextParamA,startParamA)) <- createIOContextA p (cb,(nextParamB,startParamB)) <- createIOContextB p return ((ca,cb), ((nextParamA, nextParamB), (startParamA, startParamB)))) (\(ca,cb) -> deleteIOContextA ca >> deleteIOContextB cb) -- * signal modifiers {- | Stretch signal in time by a certain factor. This can be used for doing expensive computations of filter parameters at a lower rate. Alternatively, we could provide an adaptive @map@ that recomputes output values only if the input value changes, or if the input value differs from the last processed one by a certain amount. -} interpolateConstant :: (Memory.C a, Ring.C b, IsFloating b, CmpRet b, CmpResult b ~ Bool, Storable b, MakeValueTuple b, ValueTuple b ~ (Value b), IsConst b, Memory.FirstClass b, IsSized b, IsSized (Memory.Stored b)) => Param.T p b -> T p a -> T p a interpolateConstant k (Cons next start createIOContext deleteIOContext) = Cons (\(kl,parameter) yState0 -> do ((y1,state1), ss1) <- Maybe.fromBool $ whileLoop (valueOf True, yState0) (\(cont1, (_, ss1)) -> and cont1 =<< A.fcmp FPOLE ss1 (value LLVM.zero)) (\(_,((_,state01), ss1)) -> Maybe.toBool $ liftM2 (,) (next parameter state01) (Maybe.lift $ A.add ss1 (Param.value k kl))) ss2 <- Maybe.lift $ A.sub ss1 (valueOf Ring.one) return (y1, ((y1,state1),ss2))) {- using this initialization code we would not need undefined values (do sa <- start (a,_) <- next sa return (sa, a, valueOf 0)) -} (fmap (\sa -> ((undefTuple, sa), value LLVM.zero)) . start) (\p -> do (ioContext, (nextParam, startParam)) <- createIOContext p return (ioContext, ((Param.get k p, nextParam), startParam))) deleteIOContext mix :: (A.Additive a) => T p a -> T p a -> T p a mix = zipWithSimple Frame.mix envelope :: (A.PseudoRing a) => T p a -> T p a -> T p a envelope = zipWithSimple Frame.amplifyMono envelopeStereo :: (A.PseudoRing a) => T p a -> T p (Stereo.T a) -> T p (Stereo.T a) envelopeStereo = zipWithSimple Frame.amplifyStereo amplify :: (A.PseudoRing al, Storable a, MakeValueTuple a, ValueTuple a ~ al, Memory.C al) => Param.T p a -> T p al -> T p al amplify = map Frame.amplifyMono amplifyStereo :: (A.PseudoRing al, Storable a, MakeValueTuple a, ValueTuple a ~ al, Memory.C al) => Param.T p a -> T p (Stereo.T al) -> T p (Stereo.T al) amplifyStereo = map Frame.amplifyStereo -- * signal generators constant :: (Storable a, MakeValueTuple a, ValueTuple a ~ al, Memory.C al) => Param.T p a -> T p al constant x = simple (\pl () -> return (pl, ())) return x (return ()) exponentialCore :: (Storable a, MakeValueTuple a, ValueTuple a ~ al, Memory.C al, A.PseudoRing al) => Param.T p a -> Param.T p a -> T p al exponentialCore = iterate A.mul exponential2 :: (Trans.C a, Storable a, MakeValueTuple a, ValueTuple a ~ (Value a), Memory.FirstClass a, IsSized a, IsSized (Memory.Stored a), IsArithmetic a, IsConst a) => Param.T p a -> Param.T p a -> T p (Value a) exponential2 halfLife = exponentialCore (0.5 ** recip halfLife) exponentialBoundedCore :: (Storable a, MakeValueTuple a, ValueTuple a ~ al, Memory.C al, A.PseudoRing al, A.Real al) => Param.T p a -> Param.T p a -> Param.T p a -> T p al exponentialBoundedCore bound decay = iterate (\(b,k) y -> A.max b =<< A.mul k y) (liftA2 (,) bound decay) {- | Exponential curve that remains at the bound value if it would fall below otherwise. This way you can avoid extremal values, e.g. denormalized ones. The initial value and the bound value must be positive. -} exponentialBounded2 :: (Trans.C a, Storable a, MakeValueTuple a, ValueTuple a ~ (Value a), Memory.FirstClass a, IsSized a, IsSized (Memory.Stored a), SoV.Real a, IsConst a) => Param.T p a -> Param.T p a -> Param.T p a -> T p (Value a) exponentialBounded2 bound halfLife = exponentialBoundedCore bound (0.5 ** recip halfLife) osciCore :: (Storable t, MakeValueTuple t, ValueTuple t ~ tl, Memory.C tl, A.Fraction tl) => Param.T p t -> Param.T p t -> T p tl osciCore phase freq = iterate A.incPhase freq phase osci :: (Storable t, MakeValueTuple t, ValueTuple t ~ tl, Storable c, MakeValueTuple c, ValueTuple c ~ cl, Memory.C cl, Memory.C tl, A.Fraction tl, A.IntegerConstant tl) => (forall r. cl -> tl -> CodeGenFunction r y) -> Param.T p c -> Param.T p t -> Param.T p t -> T p y osci wave waveParam phase freq = map wave waveParam $ osciCore phase freq osciSimple :: (Storable t, MakeValueTuple t, ValueTuple t ~ tl, Memory.C tl, A.Fraction tl, A.IntegerConstant tl) => (forall r. tl -> CodeGenFunction r y) -> Param.T p t -> Param.T p t -> T p y osciSimple wave = osci (const wave) (return ()) osciSaw :: (Storable a, MakeValueTuple a, ValueTuple a ~ al, Memory.C al, A.PseudoRing al, A.Fraction al, A.IntegerConstant al) => Param.T p a -> Param.T p a -> T p al osciSaw = osciSimple Wave.saw rampCore :: (Storable a, MakeValueTuple a, ValueTuple a ~ al, Memory.C al, A.Additive al, A.IntegerConstant al) => Param.T p a -> Param.T p a -> T p al rampCore = iterate A.add parabolaCore :: (Storable a, MakeValueTuple a, ValueTuple a ~ al, Memory.C al, A.Additive al, A.IntegerConstant al) => Param.T p a -> Param.T p a -> Param.T p a -> T p al parabolaCore d2 d1 start = Causal.apply (Causal.integrate start) $ rampCore d2 d1 rampInf, rampSlope, parabolaFadeInInf, parabolaFadeOutInf :: (Field.C a, Storable a, MakeValueTuple a, ValueTuple a ~ al, Memory.C al, A.Additive al, A.IntegerConstant al) => Param.T p a -> T p al rampSlope slope = rampCore slope Additive.zero rampInf dur = rampSlope (recip dur) {- t*(2-t) = 1 - (t-1)^2 (t+d)*(2-t-d) - t*(2-t) = d*(2-t) - d*t - d^2 = 2*d*(1-t) - d^2 = d*(2*(1-t) - d) 2*d*(1-t-d) + d^2 - (2*d*(1-t) + d^2) = -2*d^2 -} parabolaFadeInInf dur = parabolaCore (fmap (\d -> -2*d*d) $ recip dur) (fmap (\d -> d*(2-d)) $ recip dur) Additive.zero {- 1-t^2 -} parabolaFadeOutInf dur = parabolaCore (fmap (\d -> -2*d*d) $ recip dur) (fmap (\d -> -d*d) $ recip dur) one ramp, parabolaFadeIn, parabolaFadeOut, parabolaFadeInMap, parabolaFadeOutMap :: (RealField.C a, Storable a, MakeValueTuple a, ValueTuple a ~ al, Memory.C al, A.PseudoRing al, A.IntegerConstant al) => Param.T p a -> T p al ramp dur = Causal.apply (Causal.take (fmap round dur)) $ rampInf dur parabolaFadeIn dur = Causal.apply (Causal.take (fmap round dur)) $ parabolaFadeInInf dur parabolaFadeOut dur = Causal.apply (Causal.take (fmap round dur)) $ parabolaFadeOutInf dur parabolaFadeInMap dur = -- t*(2-t) Causal.apply (Causal.mapSimple (\t -> A.mul t =<< A.sub (A.fromInteger' 2) t)) $ ramp dur parabolaFadeOutMap dur = -- 1-t^2 Causal.apply (Causal.mapSimple (\t -> A.sub (A.fromInteger' 1) =<< A.mul t t)) $ ramp dur {- | @noise seed rate@ The @rate@ parameter is for adjusting the amplitude such that it is uniform across different sample rates and after frequency filters. The @rate@ is the ratio of the current sample rate to the default sample rate, where the variance of the samples would be one. If you want that at sample rate 22050 the variance is 1, then in order to get a consistent volume at sample rate 44100 you have to set @rate = 2@. I use the variance as quantity and not the amplitude, because the amplitude makes only sense for uniformly distributed samples. However, frequency filters transform the probabilistic density of the samples towards the normal distribution according to the central limit theorem. -} noise :: (Algebraic.C a, IsFloating a, IsConst a, NumberOfElements a ~ TypeNum.D1, Memory.C (Value a), IsSized a, MakeValueTuple a, ValueTuple a ~ (Value a), Storable a) => Param.T p Word32 -> Param.T p a -> T p (Value a) noise seed rate = let m2 = fromInteger $ div Rnd.modulus 2 in map (\r y -> A.mul r =<< flip A.sub (valueOf $ m2+1) =<< int31tofp y) (sqrt (3 * rate) / return m2) $ noiseCore seed {- sitofp is a single instruction on x86 and thus we use it, since the arguments are below 2^31. -} int31tofp :: (IsFloating a, LLVM.NumberOfElements a ~ TypeNum.D1) => Value Word32 -> CodeGenFunction r (Value a) int31tofp = LLVM.inttofp <=< (LLVM.bitcast :: Value Word32 -> CodeGenFunction r (Value Int32)) noiseCore, noiseCoreAlt :: Param.T p Word32 -> T p (Value Word32) noiseCore seed = iterate (const Rnd.nextCG) (return ()) ((+1) . flip mod (Rnd.modulus-1) ^<< seed) noiseCoreAlt seed = iterate (const Rnd.nextCG32) (return ()) ((+1) . flip mod (Rnd.modulus-1) ^<< seed) -- * conversion from and to storable vectors fromStorableVector :: (Storable a, MakeValueTuple a, ValueTuple a ~ value, Memory.C value) => Param.T p (SV.Vector a) -> T p value fromStorableVector selectVec = Cons (\() (p0,l0) -> do cont <- Maybe.lift $ A.cmp CmpGT l0 (valueOf 0) Maybe.withBool cont $ do y1 <- Memory.load p0 p1 <- advanceArrayElementPtr p0 l1 <- A.dec l0 return (y1,(p1,l1))) return (\p -> let (fp,s,l) = SVB.toForeignPtr $ Param.get selectVec p in return (fp, ((), (Memory.castStorablePtr $ Unsafe.foreignPtrToPtr fp `advancePtr` s, fromIntegral l :: Word32)))) -- keep the foreign ptr alive touchForeignPtr {- This function calls back into the Haskell function 'ChunkIt.next' that returns a pointer to the data of the next chunk and advances to the next chunk in the sequence. -} fromStorableVectorLazy :: (Storable a, MakeValueTuple a, ValueTuple a ~ value, Memory.C value) => Param.T p (SVL.Vector a) -> T p value fromStorableVectorLazy sig = Cons (\(stable, lenPtr) (buffer0,length0) -> do (buffer1,length1) <- Maybe.lift $ do nextChunkFn <- staticFunction ChunkIt.nextCallBack needNext <- A.cmp CmpEQ length0 (valueOf 0) ifThen needNext (buffer0,length0) (liftM2 (,) (call nextChunkFn stable lenPtr) (load lenPtr)) valid <- Maybe.lift $ A.cmp CmpNE buffer1 (valueOf nullPtr) Maybe.withBool valid $ do x <- Memory.load buffer1 buffer2 <- advanceArrayElementPtr buffer1 length2 <- A.dec length1 return (x, (buffer2,length2))) (\() -> return (valueOf nullPtr, valueOf 0)) (\p -> do s <- liftM2 (,) (ChunkIt.new (Param.get sig p)) Alloc.malloc return (s, (s,()))) (\(stable,lenPtr) -> do ChunkIt.dispose stable Alloc.free lenPtr) piecewiseConstant :: (Storable a, MakeValueTuple a, ValueTuple a ~ value, Memory.C value) => Param.T p (EventList.T NonNeg.Int a) -> T p value piecewiseConstant = Const.flatten . Const.piecewiseConstant {- | Turns a lazy chunky size into a signal generator with unit element type. The signal length is the only information that the generator provides. Using 'zipWith' you can use this signal as a lazy 'take'. -} lazySize :: Param.T p SVP.LazySize -> T p () lazySize = Const.flatten . Const.lazySize foreign import ccall safe "dynamic" derefFillPtr :: Exec.Importer (Ptr param -> Word32 -> Ptr a -> IO Word32) run :: (Storable a, MakeValueTuple a, ValueTuple a ~ value, Memory.C value) => T p value -> IO (Int -> p -> SV.Vector a) run (Cons next start createIOContext deleteIOContext) = do -- this compiles once and is much faster than simpleFunction fill <- fmap derefFillPtr . Exec.compileModule . createNamedFunction ExternalLinkage "fillsignalblock" $ \paramPtr size bPtr -> do (nextParam,startParam) <- Memory.load paramPtr s <- start startParam (pos,_) <- Maybe.arrayLoop size bPtr s $ \ ptri s0 -> do (y,s1) <- next nextParam s0 Maybe.lift $ Memory.store y ptri return s1 ret (pos :: Value Word32) return $ \len p -> Unsafe.performIO $ bracket (createIOContext p) (deleteIOContext . fst) $ \ (_,params) -> SVB.createAndTrim len $ \ ptr -> Alloc.with params $ \paramPtr -> (fmap fromIntegral $ fill (Memory.castStorablePtr paramPtr) (fromIntegral len) (Memory.castStorablePtr ptr)) {- | This is not really a function, see 'renderChunky'. -} render :: (Storable a, MakeValueTuple a, ValueTuple a ~ value, Memory.C value) => T p value -> Int -> p -> SV.Vector a render gen = Unsafe.performIO $ run gen foreign import ccall safe "dynamic" derefChunkPtr :: Exec.Importer (Ptr nextParamStruct -> Ptr stateStruct -> Word32 -> Ptr struct -> IO Word32) moduleChunky :: (Memory.C value, Memory.Struct value ~ struct, Memory.C state, Memory.Struct state ~ stateStruct, Memory.C startParamValue, Memory.Struct startParamValue ~ startParamStruct, Memory.C nextParamValue, Memory.Struct nextParamValue ~ nextParamStruct) => (forall r. nextParamValue -> state -> Maybe.T r (Value Bool, state) (value, state)) -> (forall r. startParamValue -> CodeGenFunction r state) -> CodeGenModule (Function (Ptr startParamStruct -> IO (Ptr stateStruct)), Function (Ptr stateStruct -> IO ()), Function (Ptr nextParamStruct -> Ptr stateStruct -> Word32 -> Ptr struct -> IO Word32)) moduleChunky next start = liftM3 (,,) (createNamedFunction ExternalLinkage "startsignal" $ \paramPtr -> do pptr <- LLVM.malloc flip Memory.store pptr =<< start =<< Memory.load paramPtr ret pptr) (createNamedFunction ExternalLinkage "stopsignal" $ \ pptr -> LLVM.free pptr >> ret ()) (createNamedFunction ExternalLinkage "fillsignal" $ \ paramPtr sptr loopLen ptr -> do param <- Memory.load paramPtr sInit <- Memory.load sptr (pos,sExit) <- Maybe.arrayLoop loopLen ptr sInit $ \ ptri s0 -> do (y,s1) <- next param s0 Maybe.lift $ Memory.store y ptri return s1 Memory.store sExit sptr ret (pos :: Value Word32)) compileChunky :: (Memory.C value, Memory.Struct value ~ struct, Memory.C state, Memory.Struct state ~ stateStruct, Memory.C startParamValue, Memory.Struct startParamValue ~ startParamStruct, Memory.C nextParamValue, Memory.Struct nextParamValue ~ nextParamStruct) => (forall r. nextParamValue -> state -> Maybe.T r (Value Bool, state) (value, state)) -> (forall r. startParamValue -> CodeGenFunction r state) -> IO (FunPtr (Ptr startParamStruct -> IO (Ptr stateStruct)), FunPtr (Ptr stateStruct -> IO ()), FunPtr (Ptr nextParamStruct -> Ptr stateStruct -> Word32 -> Ptr struct -> IO Word32)) compileChunky next start = Exec.compileModule $ moduleChunky next start debugMain :: forall struct stateStruct startParamValue startParamStruct nextParamValue nextParamStruct. (Storable startParamValue, Storable nextParamValue, LLVM.IsType struct, LLVM.IsType stateStruct, LLVM.IsType startParamStruct, LLVM.IsType nextParamStruct, IsSized startParamStruct, IsSized nextParamStruct) => CodeGenModule (Function (Ptr startParamStruct -> IO (Ptr stateStruct)), Function (Ptr stateStruct -> IO ()), Function (Ptr nextParamStruct -> Ptr stateStruct -> Word32 -> Ptr struct -> IO Word32)) -> (nextParamValue, startParamValue) -> IO (Function (Word32 -> Ptr (Ptr Word8) -> IO Word32)) debugMain sigModule (nextParam, startParam) = do {- This does not work, since we cannot add (Mul n D32 s) constraint to the function argument in reifyIntegral. nextArray <- DebugSt.withConstArray nextParam (\arr -> do ptr <- LLVM.alloca LLVM.store (value arr) ptr LLVM.bitcast ptr) -} nextArray <- DebugSt.withConstArray nextParam (\arr -> do ptr <- LLVM.alloca LLVM.store (value arr) =<< LLVM.bitcast ptr return ptr) startArray <- DebugSt.withConstArray startParam (\arr -> do ptr <- LLVM.alloca LLVM.store (value arr) =<< LLVM.bitcast ptr return ptr) m <- LLVM.newModule mainFunc <- defineModule m (do mallocBytes <- LLVM.newNamedFunction ExternalLinkage "malloc" :: LLVM.TFunction (Ptr Word8 -> IO (Ptr struct)) (start, stop, fill) <- sigModule createNamedFunction ExternalLinkage "main" $ \ _argc _argv -> do state <- LLVM.call start =<< startArray let chunkSize = LLVM.valueOf 100000 basePtr = LLVM.valueOf nullPtr buffer <- LLVM.call mallocBytes =<< LLVM.bitcast =<< LLVM.getElementPtr basePtr (chunkSize, ()) nextPtr <- nextArray _done <- LLVM.call fill nextPtr state chunkSize (asTypeOf buffer basePtr) _ <- LLVM.call stop state ret (LLVM.value LLVM.zero :: LLVM.Value Word32)) Counter.with Exec.counter $ R.ReaderT $ \cnt -> do writeBitcodeToFile ("main" ++ Counter.format 3 cnt ++ ".bc") m return mainFunc {- | Renders a signal generator to a chunky storable vector with given pattern. If the pattern is shorter than the generated signal this means that the signal is shortened. -} runChunkyPattern :: (Storable a, MakeValueTuple a, ValueTuple a ~ value, Memory.C value) => T p value -> IO (SVP.LazySize -> p -> SVL.Vector a) runChunkyPattern (Cons next start createIOContext deleteIOContext) = do (startFunc, stopFunc, fill) <- compileChunky next start return $ \ lazysize p -> SVL.fromChunks $ Unsafe.performIO $ do (ioContext, (nextParam, startParam)) <- createIOContext p {- putStr "nextParam: " DebugSt.format nextParam >>= putStrLn -} when False $ Counter.with DebugSt.dumpCounter $ do DebugSt.dump "next-param" nextParam DebugSt.dump "start-param" startParam when False $ void $ debugMain (moduleChunky next start) (nextParam, startParam) statePtr <- ForeignPtr.newParam stopFunc startFunc startParam nextParamPtr <- ForeignPtr.new (deleteIOContext ioContext) nextParam let go cs = Unsafe.interleaveIO $ case cs of [] -> return [] SVL.ChunkSize size : rest -> do v <- withForeignPtr statePtr $ \sptr -> ForeignPtr.with nextParamPtr $ \nptr -> SVB.createAndTrim size $ fmap fromIntegral . derefChunkPtr fill nptr sptr (fromIntegral size) . Memory.castStorablePtr (if SV.length v > 0 then fmap (v:) else id) $ (if SV.length v < size then return [] else go rest) go (Chunky.toChunks lazysize) runChunky :: (Storable a, MakeValueTuple a, ValueTuple a ~ value, Memory.C value) => T p value -> IO (SVL.ChunkSize -> p -> SVL.Vector a) runChunky sig = flip fmap (runChunkyPattern sig) $ \f size p -> f (Chunky.fromChunks (repeat size)) p {- | This looks like a function, but it is not a function since it depends on LLVM being initialized with LLVM.initializeNativeTarget before. It is also problematic since you cannot control when and how often the underlying LLVM code is compiled. The compilation cannot be observed, thus it is referential transparent. But this influences performance considerably and I assume that you use this package exclusively for performance reasons. -} renderChunky :: (Storable a, MakeValueTuple a, ValueTuple a ~ value, Memory.C value) => SVL.ChunkSize -> T p value -> p -> SVL.Vector a renderChunky size gen = Unsafe.performIO (runChunky gen) size