{-# LANGUAGE NoImplicitPrelude #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE TypeOperators #-} {-# LANGUAGE FlexibleContexts #-} {-# OPTIONS_GHC -fno-warn-orphans #-} module Synthesizer.LLVM.Filter.SecondOrder ( Parameter(Parameter), Filt2.c0, Filt2.c1, Filt2.c2, Filt2.d1, Filt2.d2, bandpassParameter, ParameterStruct, composeParameter, decomposeParameter, -- for cascade causal, causalPacked, causalP, causalPackedP, ) where import qualified Synthesizer.Plain.Filter.Recursive.SecondOrder as Filt2 import Synthesizer.Plain.Filter.Recursive.SecondOrder (Parameter(Parameter), ) import qualified Synthesizer.Plain.Modifier as Modifier import qualified Synthesizer.LLVM.CausalParameterized.Process as CausalP import qualified Synthesizer.LLVM.Causal.Process as Causal import qualified Synthesizer.LLVM.Frame.SerialVector as Serial import qualified Synthesizer.LLVM.Simple.Value as Value import qualified LLVM.Extra.Memory as Memory import qualified LLVM.Extra.Class as Class import qualified LLVM.Extra.Arithmetic as A import qualified LLVM.Extra.Monad as M import LLVM.Extra.Class (Undefined, undefTuple, ) import qualified LLVM.Core as LLVM import LLVM.Core (CodeGenFunction, valueOf, ) import LLVM.Util.Loop (Phi, phis, addPhis, ) import qualified Types.Data.Num as TypeNum import Types.Data.Num (d0, d1, d2, d3, d4, ) import Control.Arrow (arr, (<<<), (&&&), ) import Control.Monad (liftM2, foldM, ) import Control.Applicative (pure, (<*>), ) import Synthesizer.ApplicativeUtility (liftA4, liftA5, ) import NumericPrelude.Numeric import NumericPrelude.Base instance (Phi a) => Phi (Parameter a) where phis = Class.phisTraversable addPhis = Class.addPhisFoldable instance Undefined a => Undefined (Parameter a) where undefTuple = Class.undefTuplePointed {- instance LLVM.ValueTuple a => LLVM.ValueTuple (Parameter a) where buildTuple f = Class.buildTupleTraversable (LLVM.buildTuple f) instance LLVM.IsTuple a => LLVM.IsTuple (Parameter a) where tupleDesc = Class.tupleDescFoldable -} instance (Class.MakeValueTuple a) => Class.MakeValueTuple (Parameter a) where type ValueTuple (Parameter a) = Parameter (Class.ValueTuple a) valueTupleOf = Class.valueTupleOfFunctor type ParameterStruct a = LLVM.Struct (a, (a, (a, (a, (a, ()))))) parameterMemory :: (Memory.C a) => Memory.Record r (ParameterStruct (Memory.Struct a)) (Parameter a) parameterMemory = liftA5 Parameter (Memory.element Filt2.c0 d0) (Memory.element Filt2.c1 d1) (Memory.element Filt2.c2 d2) (Memory.element Filt2.d1 d3) (Memory.element Filt2.d2 d4) decomposeParameter :: LLVM.Value (ParameterStruct a) -> CodeGenFunction r (Filt2.Parameter (LLVM.Value a)) decomposeParameter param = pure Filt2.Parameter <*> LLVM.extractvalue param TypeNum.d0 <*> LLVM.extractvalue param TypeNum.d1 <*> LLVM.extractvalue param TypeNum.d2 <*> LLVM.extractvalue param TypeNum.d3 <*> LLVM.extractvalue param TypeNum.d4 composeParameter :: (LLVM.IsSized a) => Filt2.Parameter (LLVM.Value a) -> CodeGenFunction r (LLVM.Value (ParameterStruct a)) composeParameter (Filt2.Parameter c0_ c1_ c2_ d1_ d2_) = (\param -> LLVM.insertvalue param c0_ TypeNum.d0) =<< (\param -> LLVM.insertvalue param c1_ TypeNum.d1) =<< (\param -> LLVM.insertvalue param c2_ TypeNum.d2) =<< (\param -> LLVM.insertvalue param d1_ TypeNum.d3) =<< (\param -> LLVM.insertvalue param d2_ TypeNum.d4) =<< return (LLVM.value LLVM.undef) instance (Memory.C a) => Memory.C (Parameter a) where type Struct (Parameter a) = ParameterStruct (Memory.Struct a) load = Memory.loadRecord parameterMemory store = Memory.storeRecord parameterMemory decompose = Memory.decomposeRecord parameterMemory compose = Memory.composeRecord parameterMemory instance (Value.Flatten a) => Value.Flatten (Parameter a) where type Registers (Parameter a) = Parameter (Value.Registers a) flattenCode = Value.flattenCodeTraversable unfoldCode = Value.unfoldCodeTraversable instance (Phi a) => Phi (Filt2.State a) where phis = Class.phisTraversable addPhis = Class.addPhisFoldable instance Undefined a => Undefined (Filt2.State a) where undefTuple = Class.undefTuplePointed type StateStruct a = LLVM.Struct (a, (a, (a, (a, (a, ()))))) stateMemory :: (Memory.C a) => Memory.Record r (StateStruct (Memory.Struct a)) (Filt2.State a) stateMemory = liftA4 Filt2.State (Memory.element Filt2.u1 d0) (Memory.element Filt2.u2 d1) (Memory.element Filt2.y1 d2) (Memory.element Filt2.y2 d3) instance (Memory.C a) => Memory.C (Filt2.State a) where type Struct (Filt2.State a) = StateStruct (Memory.Struct a) load = Memory.loadRecord stateMemory store = Memory.storeRecord stateMemory decompose = Memory.decomposeRecord stateMemory compose = Memory.composeRecord stateMemory instance (Value.Flatten a) => Value.Flatten (Filt2.State a) where type Registers (Filt2.State a) = Filt2.State (Value.Registers a) flattenCode = Value.flattenCodeTraversable unfoldCode = Value.unfoldCodeTraversable {-# DEPRECATED bandpassParameter "only for testing, use Universal or Moog filter for production code" #-} bandpassParameter :: (A.Transcendental a, A.RationalConstant a) => a -> a -> CodeGenFunction r (Parameter a) bandpassParameter reson cutoff = do rreson <- A.fdiv A.one reson k <- A.sub A.one rreson k2 <- A.neg =<< A.mul k k kcos <- A.mul (A.fromInteger' 2) =<< A.mul k =<< A.cos =<< A.mul cutoff =<< Value.decons Value.twoPi return $ Filt2.Parameter rreson A.zero A.zero kcos k2 modifier :: (a ~ A.Scalar v, A.PseudoModule v, A.IntegerConstant a) => Modifier.Simple (Filt2.State (Value.T v)) (Parameter (Value.T a)) (Value.T v) (Value.T v) modifier = Filt2.modifier causal :: (Causal.C process, a ~ A.Scalar v, A.PseudoModule v, A.IntegerConstant a, Memory.C v) => process (Parameter a, v) v causal = Causal.fromModifier modifier {-# DEPRECATED causalP "use causal instead" #-} causalP :: (a ~ A.Scalar v, A.PseudoModule v, A.IntegerConstant a, Memory.C v) => CausalP.T p (Parameter a, v) v causalP = CausalP.fromModifier modifier {-# DEPRECATED causalPackedP "use causalPacked instead" #-} causalPackedP :: (Serial.C v, Serial.Element v ~ a, Memory.C v, Memory.C a, A.IntegerConstant v, A.IntegerConstant a, A.PseudoRing v, A.PseudoRing a) => CausalP.T p (Parameter a, v) v causalPackedP = causalPacked {- | Vector size must be at least D2. -} causalPacked, causalRecursivePacked :: (Causal.C process, Serial.C v, Serial.Element v ~ a, Memory.C v, Memory.C a, A.IntegerConstant v, A.IntegerConstant a, A.PseudoRing v, A.PseudoRing a) => process (Parameter a, v) v causalPacked = causalRecursivePacked <<< (arr fst &&& causalNonRecursivePacked) _causalRecursivePackedAlt, causalNonRecursivePacked :: (Causal.C process, Serial.C v, Serial.Element v ~ a, Memory.C a, A.IntegerConstant v, A.IntegerConstant a, A.PseudoRing v, A.PseudoRing a) => process (Parameter a, v) v causalNonRecursivePacked = Causal.mapAccum (\(p, v0) (x1,x2) -> do (u1n,v1) <- Serial.shiftUp x1 v0 (u2n,v2) <- Serial.shiftUp x2 v1 w0 <- A.mul v0 =<< Serial.upsample (Filt2.c0 p) w1 <- A.mul v1 =<< Serial.upsample (Filt2.c1 p) w2 <- A.mul v2 =<< Serial.upsample (Filt2.c2 p) y <- A.add w0 =<< A.add w1 w2 return (y, (u1n,u2n))) (return (A.zero, A.zero)) {- A filter of second order can be considered as the convolution of two filters of first order. [1,r]*[1,0,r^2] = [1,r,r^2,r^3] [1,r,r^2,r^3] * [1,s,s^2,s^3] = [1,r]*[1,s]*[1,0,r^2]*[1,0,s^2] with a=r+s b=r*s = [1,a,b]*[1,0,r^2]*[1,0,s^2] = [1,a,b]*[1,0,a^2-2*b,0,b^2] [1,0,0,0,r^4]*[1,0,0,0,s^4] = [1,0,0,0,(a^2-2*b)^2-2*b^2,0,0,0,b^4] = [1,0,0,0,a^4-4*a^2*b+2*b^2,0,0,0,b^4] -} {- x = [x0, x1, x2, x3] filter2 (a,-b) (y1,y2) x = [x0 + a*y1 - b*y2, x1 + a*x0 + (a^2-b)*y1 - a*b*y2, x2 + a*x1 + (a^2-b)*x0 + (a^3-2*a*b)*y1 + (-a^2*b+b^2)*y2, x3 + a*x2 + (a^2-b)*x1 + (a^3-2*a*b)*x0 + (a^4-3*a^2*b+b^2)*y1 + (-a^3*b+2*a*b^2)*y2] (f0x = insert 0 (k*y1) x) f1x = f0x + a * f0x->1 + b * f0x->2 f2x = f1x + (a^2-2*b) * f1x->2 + b^2 * f1x->4 -} causalRecursivePacked = Causal.mapAccum (\(p, x0) y1v -> do let size = Serial.size x0 d1v <- Serial.upsample (Filt2.d1 p) d2v <- Serial.upsample (Filt2.d2 p) d2vn <- A.neg d2v y1 <- Serial.extract (valueOf $ fromIntegral size - 1) y1v xk1 <- Serial.modify (valueOf 0) (\u0 -> A.add u0 =<< A.mul (Filt2.d1 p) y1) =<< A.add x0 =<< A.mul d2v =<< Serial.shiftDownMultiZero (size - 2) y1v -- let xk2 = xk1 xk2 <- fmap fst $ foldM (\(y,(a,b)) d -> liftM2 (,) (A.add y =<< M.liftR2 A.add {- Possibility for optimization: In the last step the second operand is a zero vector (LLVM already optimizes this away) and the first operand could be merged with the second operand of the previous step. -} (Serial.shiftUpMultiZero d =<< A.mul y a) (Serial.shiftUpMultiZero (2*d) =<< A.mul y b)) $ liftM2 (,) (M.liftR2 A.sub (A.mul a a) (A.mul b (A.fromInteger' 2))) (A.mul b b)) (xk1,(d1v,d2vn)) (takeWhile (< size) $ iterate (2*) 1) return (xk2, xk2)) (return A.zero) _causalRecursivePackedAlt = Causal.mapAccum (\(p, x0) (x1,x2) -> do let size = Serial.size x0 -- let xk1 = x0 xk1 <- Serial.modify (valueOf 0) (\u0 -> A.add u0 =<< M.liftR2 A.add (A.mul (Filt2.d2 p) x2) (A.mul (Filt2.d1 p) x1)) =<< Serial.modify (valueOf 1) (\u1 -> A.add u1 =<< A.mul (Filt2.d2 p) x1) x0 -- let xk2 = xk1 d1v <- Serial.upsample (Filt2.d1 p) d2v <- Serial.upsample =<< A.neg (Filt2.d2 p) xk2 <- fmap fst $ foldM (\(y,(a,b)) d -> liftM2 (,) (A.add y =<< M.liftR2 A.add (Serial.shiftUpMultiZero d =<< A.mul y a) (Serial.shiftUpMultiZero (2*d) =<< A.mul y b)) $ liftM2 (,) (M.liftR2 A.sub (A.mul a a) (A.mul b (A.fromInteger' 2))) (A.mul b b)) (xk1,(d1v,d2v)) (takeWhile (< size) $ iterate (2*) 1) y0 <- Serial.extract (valueOf $ fromIntegral size - 1) xk2 y1 <- Serial.extract (valueOf $ fromIntegral size - 2) xk2 return (xk2, (y0,y1))) (return (A.zero, A.zero)) {- A filter of second order can also be represented by a filter of first order with 2x2-matrix coefficients. filter1 ((d1,d2), (1,0)) (y1,y2) [(x0,0), (x1,0), (x2,0), (x3,0)] /d1i d2i\ . /d1j d2j\ = /d1i*d1j + d2i d1i*d2j\ \ 1 0 / \ 1 0 / \ d1j d2j/ With this representation we can also implement filters with time-variant filter parameters using time-variant first-order filter. -}