{-# LANGUAGE NoImplicitPrelude #-} {-# LANGUAGE ExistentialQuantification #-} {-# LANGUAGE Rank2Types #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE UndecidableInstances #-} module Synthesizer.LLVM.Plug.Output where import qualified Synthesizer.Zip as Zip import qualified LLVM.Extra.Memory as Memory import qualified LLVM.Extra.Class as Class import qualified LLVM.Extra.Arithmetic as A import qualified LLVM.Core as LLVM import Control.Monad (liftM2, ) import qualified Synthesizer.LLVM.Storable.Vector as SVU import qualified Data.StorableVector as SV import qualified Data.StorableVector.Base as SVB import qualified Foreign.ForeignPtr as FPtr import Foreign.Storable.Tuple () import Foreign.Storable (Storable, ) import NumericPrelude.Numeric import NumericPrelude.Base hiding (and, iterate, map, zip, zipWith, take, takeWhile, ) data T a b = forall state ioContext paramTuple. (Storable paramTuple, Class.MakeValueTuple paramTuple, Memory.C (Class.ValueTuple paramTuple), Memory.C state) => Cons (forall r. Class.ValueTuple paramTuple -> a -> state -> LLVM.CodeGenFunction r state) -- compute next value (forall r. Class.ValueTuple paramTuple -> LLVM.CodeGenFunction r state) -- initial state (Int -> IO (ioContext, paramTuple)) {- initialization from IO monad This is called once per output chunk with the number of input samples. This number is also the maximum possible number of output samples. This will be run within Unsafe.performIO, so no observable In/Out actions please! -} (Int -> ioContext -> IO b) {- finalization from IO monad, also run within Unsafe.performIO The integer argument is the actually produced size of data. We must clip the allocated output vectors accordingly. -} class Default b where type Element b :: * deflt :: T (Element b) b instance (Default c, Default d) => Default (Zip.T c d) where type Element (Zip.T c d) = (Element c, Element d) deflt = split deflt deflt instance (Storable a, Class.MakeValueTuple a, Memory.C (Class.ValueTuple a)) => Default (SV.Vector a) where type Element (SV.Vector a) = Class.ValueTuple a deflt = storableVector split :: T a c -> T b d -> T (a,b) (Zip.T c d) split (Cons nextA startA createA deleteA) (Cons nextB startB createB deleteB) = Cons (\(parameterA, parameterB) (a,b) (sa0,sb0) -> do sa1 <- nextA parameterA a sa0 sb1 <- nextB parameterB b sb0 return (sa1,sb1)) (\(parameterA, parameterB) -> liftM2 (,) (startA parameterA) (startB parameterB)) (\len -> do (ca,paramA) <- createA len (cb,paramB) <- createB len return ((ca,cb), (paramA, paramB))) (\len (ca,cb) -> liftM2 Zip.Cons (deleteA len ca) (deleteB len cb)) storableVector :: (Class.MakeValueTuple a, value ~ Class.ValueTuple a, Memory.C value, Storable a) => T value (SV.Vector a) storableVector = Cons (\ _ a p -> Memory.store a p >> A.advanceArrayElementPtr p) return (\len -> do vec <- SVB.create len (const $ return ()) -- offset should be always zero, but we must not rely on that let (_fp,ptr,_l) = SVU.unsafeToPointers vec return (vec, ptr)) (\len vec -> do let (fp,_s,_l) = SVB.toForeignPtr vec -- keep the foreign ptr alive FPtr.touchForeignPtr fp return $ SV.take len vec)