{-# LANGUAGE BangPatterns, CPP, MagicHash, Rank2Types, UnboxedTuples, TypeFamilies #-} {-# LANGUAGE TemplateHaskellQuotes #-} {-# LANGUAGE Trustworthy #-} {-# LANGUAGE UnliftedFFITypes #-} {-# LANGUAGE ScopedTypeVariables #-} {-# OPTIONS_GHC -fno-warn-orphans #-} -- | -- Module : Data.Text -- Copyright : (c) 2009, 2010, 2011, 2012 Bryan O'Sullivan, -- (c) 2009 Duncan Coutts, -- (c) 2008, 2009 Tom Harper -- (c) 2021 Andrew Lelechenko -- -- License : BSD-style -- Maintainer : bos@serpentine.com -- Portability : GHC -- -- A time and space-efficient implementation of Unicode text. -- Suitable for performance critical use, both in terms of large data -- quantities and high speed. -- -- /Note/: Read below the synopsis for important notes on the use of -- this module. -- -- This module is intended to be imported @qualified@, to avoid name -- clashes with "Prelude" functions, e.g. -- -- > import qualified Data.Text as T -- -- To use an extended and very rich family of functions for working -- with Unicode text (including normalization, regular expressions, -- non-standard encodings, text breaking, and locales), see the -- . -- module Data.Text ( -- * Strict vs lazy types -- $strict -- * Acceptable data -- $replacement -- * Definition of character -- $character_definition -- * Fusion -- $fusion -- * Types Text -- * Creation and elimination , pack , unpack , singleton , empty -- * Basic interface , cons , snoc , append , uncons , unsnoc , head , last , tail , init , null , length , compareLength -- * Transformations , map , intercalate , intersperse , transpose , reverse , replace -- ** Case conversion -- $case , toCaseFold , toLower , toUpper , toTitle -- ** Justification , justifyLeft , justifyRight , center -- * Folds , foldl , foldl' , foldl1 , foldl1' , foldr , foldr' , foldr1 -- ** Special folds , concat , concatMap , any , all , maximum , minimum -- * Construction -- ** Scans , scanl , scanl1 , scanr , scanr1 -- ** Accumulating maps , mapAccumL , mapAccumR -- ** Generation and unfolding , replicate , unfoldr , unfoldrN -- * Substrings -- ** Breaking strings , take , takeEnd , drop , dropEnd , takeWhile , takeWhileEnd , dropWhile , dropWhileEnd , dropAround , strip , stripStart , stripEnd , splitAt , breakOn , breakOnEnd , break , span , spanM , spanEndM , group , groupBy , inits , tails -- ** Breaking into many substrings -- $split , splitOn , split , chunksOf -- ** Breaking into lines and words , lines --, lines' , words , unlines , unwords -- * Predicates , isPrefixOf , isSuffixOf , isInfixOf -- ** View patterns , stripPrefix , stripSuffix , commonPrefixes -- * Searching , filter , breakOnAll , find , elem , partition -- , findSubstring -- * Indexing -- $index , index , findIndex , count -- * Zipping , zip , zipWith -- -* Ordered text -- , sort -- * Low level operations , copy , unpackCString# , unpackCStringAscii# , measureOff ) where import Prelude (Char, Bool(..), Int, Maybe(..), String, Eq, (==), (/=), Ord(..), Ordering(..), (++), Monad(..), pure, Read(..), (&&), (||), (+), (-), (.), ($), ($!), (>>), not, return, otherwise, quot, IO) import Control.DeepSeq (NFData(rnf)) #if defined(ASSERTS) import Control.Exception (assert) #endif import Data.Bits ((.&.)) import Data.Char (isSpace, isAscii, ord) import Data.Data (Data(gfoldl, toConstr, gunfold, dataTypeOf), constrIndex, Constr, mkConstr, DataType, mkDataType, Fixity(Prefix)) import Control.Monad (foldM) import Control.Monad.ST (ST, runST) import Control.Monad.ST.Unsafe (unsafeIOToST) import qualified Data.Text.Array as A import qualified Data.List as L import Data.Binary (Binary(get, put)) import Data.Int (Int8) import Data.Monoid (Monoid(..)) import Data.Semigroup (Semigroup(..)) import Data.String (IsString(..)) import Data.Text.Internal.Encoding.Utf8 (utf8Length, utf8LengthByLeader, chr2, chr3, chr4, ord2, ord3, ord4) import qualified Data.Text.Internal.Fusion as S import qualified Data.Text.Internal.Fusion.Common as S import Data.Text.Encoding (decodeUtf8', encodeUtf8) import Data.Text.Internal.Fusion (stream, reverseStream, unstream) import Data.Text.Internal.Private (span_) import Data.Text.Internal (Text(..), empty, firstf, mul, safe, text, append) import Data.Text.Internal.Unsafe.Char (unsafeWrite, unsafeChr8) import Data.Text.Show (singleton, unpack, unpackCString#, unpackCStringAscii#) import qualified Prelude as P import Data.Text.Unsafe (Iter(..), iter, iter_, lengthWord8, reverseIter, reverseIter_, unsafeHead, unsafeTail, unsafeDupablePerformIO, iterArray, reverseIterArray) import Data.Text.Foreign (asForeignPtr) import Data.Text.Internal.Search (indices) #if defined(__HADDOCK__) import Data.ByteString (ByteString) import qualified Data.Text.Lazy as L import Data.Int (Int64) #endif import Data.Word (Word8) import Foreign.C.Types import GHC.Base (eqInt, neInt, gtInt, geInt, ltInt, leInt, ByteArray#) import qualified GHC.Exts as Exts import GHC.Stack (HasCallStack) import qualified Language.Haskell.TH.Lib as TH import qualified Language.Haskell.TH.Syntax as TH import Text.Printf (PrintfArg, formatArg, formatString) import System.Posix.Types (CSsize(..)) import System.IO.Unsafe (unsafePerformIO) -- $setup -- >>> :set -package transformers -- >>> import Control.Monad.Trans.State -- >>> import Data.Text -- >>> import qualified Data.Text as T -- >>> :seti -XOverloadedStrings -- $character_definition -- -- This package uses the term /character/ to denote Unicode /code points/. -- -- Note that this is not the same thing as a grapheme (e.g. a -- composition of code points that form one visual symbol). For -- instance, consider the grapheme \"ä\". This symbol has two -- Unicode representations: a single code-point representation -- @U+00E4@ (the @LATIN SMALL LETTER A WITH DIAERESIS@ code point), -- and a two code point representation @U+0061@ (the \"@A@\" code -- point) and @U+0308@ (the @COMBINING DIAERESIS@ code point). -- $strict -- -- This package provides both strict and lazy 'Text' types. The -- strict type is provided by the "Data.Text" module, while the lazy -- type is provided by the "Data.Text.Lazy" module. Internally, the -- lazy @Text@ type consists of a list of strict chunks. -- -- The strict 'Text' type requires that an entire string fit into -- memory at once. The lazy 'Data.Text.Lazy.Text' type is capable of -- streaming strings that are larger than memory using a small memory -- footprint. In many cases, the overhead of chunked streaming makes -- the lazy 'Data.Text.Lazy.Text' type slower than its strict -- counterpart, but this is not always the case. Sometimes, the time -- complexity of a function in one module may be different from the -- other, due to their differing internal structures. -- -- Each module provides an almost identical API, with the main -- difference being that the strict module uses 'Int' values for -- lengths and counts, while the lazy module uses 'Data.Int.Int64' -- lengths. -- $replacement -- -- A 'Text' value is a sequence of Unicode scalar values, as defined -- in -- . -- As such, a 'Text' cannot contain values in the range U+D800 to -- U+DFFF inclusive. Haskell implementations admit all Unicode code -- points -- () -- as 'Char' values, including code points from this invalid range. -- This means that there are some 'Char' values -- (corresponding to 'Data.Char.Surrogate' category) that are not valid -- Unicode scalar values, and the functions in this module must handle -- those cases. -- -- Within this module, many functions construct a 'Text' from one or -- more 'Char' values. Those functions will substitute 'Char' values -- that are not valid Unicode scalar values with the replacement -- character \"�\" (U+FFFD). Functions that perform this -- inspection and replacement are documented with the phrase -- \"Performs replacement on invalid scalar values\". The functions replace -- invalid scalar values, instead of dropping them, as a security -- measure. For details, see -- .) -- $fusion -- -- Starting from @text-1.3@ fusion is no longer implicit, -- and pipelines of transformations usually allocate intermediate 'Text' values. -- Users, who observe significant changes to performances, -- are encouraged to use fusion framework explicitly, employing -- "Data.Text.Internal.Fusion" and "Data.Text.Internal.Fusion.Common". instance Eq Text where Text arrA offA lenA == Text arrB offB lenB | lenA == lenB = A.equal arrA offA arrB offB lenA | otherwise = False {-# INLINE (==) #-} instance Ord Text where compare = compareText instance Read Text where readsPrec p str = [(pack x,y) | (x,y) <- readsPrec p str] -- | @since 1.2.2.0 instance Semigroup Text where (<>) = append instance Monoid Text where mempty = empty mappend = (<>) mconcat = concat -- | Performs replacement on invalid scalar values: -- -- >>> :set -XOverloadedStrings -- >>> "\55555" :: Text -- "\65533" instance IsString Text where fromString = pack -- | Performs replacement on invalid scalar values: -- -- >>> :set -XOverloadedLists -- >>> ['\55555'] :: Text -- "\65533" -- -- @since 1.2.0.0 instance Exts.IsList Text where type Item Text = Char fromList = pack toList = unpack instance NFData Text where rnf !_ = () -- | @since 1.2.1.0 instance Binary Text where put t = put (encodeUtf8 t) get = do bs <- get case decodeUtf8' bs of P.Left exn -> P.fail (P.show exn) P.Right a -> P.return a -- | This instance preserves data abstraction at the cost of inefficiency. -- We omit reflection services for the sake of data abstraction. -- -- This instance was created by copying the updated behavior of -- @"Data.Set".@'Data.Set.Set' and @"Data.Map".@'Data.Map.Map'. If you -- feel a mistake has been made, please feel free to submit -- improvements. -- -- The original discussion is archived here: -- -- -- The followup discussion that changed the behavior of 'Data.Set.Set' -- and 'Data.Map.Map' is archived here: -- instance Data Text where gfoldl f z txt = z pack `f` (unpack txt) toConstr _ = packConstr gunfold k z c = case constrIndex c of 1 -> k (z pack) _ -> P.error "gunfold" dataTypeOf _ = textDataType -- | @since 1.2.4.0 instance TH.Lift Text where #if MIN_VERSION_template_haskell(2,16,0) lift txt = do let (ptr, len) = unsafePerformIO $ asForeignPtr txt let lenInt = P.fromIntegral len TH.appE (TH.appE (TH.varE 'unpackCStringLen#) (TH.litE . TH.bytesPrimL $ TH.mkBytes ptr 0 lenInt)) (TH.lift lenInt) #else lift = TH.appE (TH.varE 'pack) . TH.stringE . unpack #endif #if MIN_VERSION_template_haskell(2,17,0) liftTyped = TH.unsafeCodeCoerce . TH.lift #elif MIN_VERSION_template_haskell(2,16,0) liftTyped = TH.unsafeTExpCoerce . TH.lift #endif unpackCStringLen# :: Exts.Addr# -> Int -> Text unpackCStringLen# addr# l = Text ba 0 l where ba = runST $ do marr <- A.new l A.copyFromPointer marr 0 (Exts.Ptr addr#) l A.unsafeFreeze marr {-# NOINLINE unpackCStringLen# #-} -- set as NOINLINE to avoid generated code bloat -- | @since 1.2.2.0 instance PrintfArg Text where formatArg txt = formatString $ unpack txt packConstr :: Constr packConstr = mkConstr textDataType "pack" [] Prefix textDataType :: DataType textDataType = mkDataType "Data.Text.Text" [packConstr] -- | /O(n)/ Compare two 'Text' values lexicographically. compareText :: Text -> Text -> Ordering compareText (Text arrA offA lenA) (Text arrB offB lenB) = A.compare arrA offA arrB offB (min lenA lenB) <> compare lenA lenB -- This is not a mistake: on contrary to UTF-16 (https://github.com/haskell/text/pull/208), -- lexicographic ordering of UTF-8 encoded strings matches lexicographic ordering -- of underlying bytearrays, no decoding is needed. -- ----------------------------------------------------------------------------- -- * Conversion to/from 'Text' -- | /O(n)/ Convert a 'String' into a 'Text'. -- Performs replacement on invalid scalar values, so @'unpack' . 'pack'@ is not 'id': -- -- >>> unpack (pack "\55555") -- "\65533" pack :: String -> Text pack = unstream . S.map safe . S.streamList {-# INLINE [1] pack #-} -- ----------------------------------------------------------------------------- -- * Basic functions -- | /O(n)/ Adds a character to the front of a 'Text'. This function -- is more costly than its 'List' counterpart because it requires -- copying a new array. Performs replacement on -- invalid scalar values. cons :: Char -> Text -> Text cons c = unstream . S.cons (safe c) . stream {-# INLINE [1] cons #-} infixr 5 `cons` -- | /O(n)/ Adds a character to the end of a 'Text'. This copies the -- entire array in the process. -- Performs replacement on invalid scalar values. snoc :: Text -> Char -> Text snoc t c = unstream (S.snoc (stream t) (safe c)) {-# INLINE snoc #-} -- | /O(1)/ Returns the first character of a 'Text', which must be -- non-empty. This is a partial function, consider using 'uncons' instead. head :: HasCallStack => Text -> Char head t = S.head (stream t) {-# INLINE head #-} -- | /O(1)/ Returns the first character and rest of a 'Text', or -- 'Nothing' if empty. uncons :: Text -> Maybe (Char, Text) uncons t@(Text arr off len) | len <= 0 = Nothing | otherwise = Just $ let !(Iter c d) = iter t 0 in (c, text arr (off+d) (len-d)) {-# INLINE [1] uncons #-} -- | /O(1)/ Returns the last character of a 'Text', which must be -- non-empty. This is a partial function, consider using 'unsnoc' instead. last :: HasCallStack => Text -> Char last t@(Text _ _ len) | len <= 0 = emptyError "last" | otherwise = let Iter c _ = reverseIter t (len - 1) in c {-# INLINE [1] last #-} -- | /O(1)/ Returns all characters after the head of a 'Text', which -- must be non-empty. This is a partial function, consider using 'uncons' instead. tail :: HasCallStack => Text -> Text tail t@(Text arr off len) | len <= 0 = emptyError "tail" | otherwise = text arr (off+d) (len-d) where d = iter_ t 0 {-# INLINE [1] tail #-} -- | /O(1)/ Returns all but the last character of a 'Text', which must -- be non-empty. This is a partial function, consider using 'unsnoc' instead. init :: HasCallStack => Text -> Text init t@(Text arr off len) | len <= 0 = emptyError "init" | otherwise = text arr off (len + reverseIter_ t (len - 1)) {-# INLINE [1] init #-} -- | /O(1)/ Returns all but the last character and the last character of a -- 'Text', or 'Nothing' if empty. -- -- @since 1.2.3.0 unsnoc :: Text -> Maybe (Text, Char) unsnoc t@(Text arr off len) | len <= 0 = Nothing | otherwise = Just (text arr off (len + d), c) where Iter c d = reverseIter t (len - 1) {-# INLINE [1] unsnoc #-} -- | /O(1)/ Tests whether a 'Text' is empty or not. null :: Text -> Bool null (Text _arr _off len) = #if defined(ASSERTS) assert (len >= 0) $ #endif len <= 0 {-# INLINE [1] null #-} -- | /O(1)/ Tests whether a 'Text' contains exactly one character. isSingleton :: Text -> Bool isSingleton = S.isSingleton . stream {-# INLINE isSingleton #-} -- | /O(n)/ Returns the number of characters in a 'Text'. length :: #if defined(ASSERTS) HasCallStack => #endif Text -> Int length = P.negate . measureOff P.maxBound {-# INLINE [1] length #-} -- length needs to be phased after the compareN/length rules otherwise -- it may inline before the rules have an opportunity to fire. {-# RULES "TEXT length/filter -> S.length/S.filter" forall p t. length (filter p t) = S.length (S.filter p (stream t)) "TEXT length/unstream -> S.length" forall t. length (unstream t) = S.length t "TEXT length/pack -> P.length" forall t. length (pack t) = P.length t "TEXT length/map -> length" forall f t. length (map f t) = length t "TEXT length/zipWith -> length" forall f t1 t2. length (zipWith f t1 t2) = min (length t1) (length t2) "TEXT length/replicate -> n" forall n t. length (replicate n t) = mul (max 0 n) (length t) "TEXT length/cons -> length+1" forall c t. length (cons c t) = 1 + length t "TEXT length/intersperse -> 2*length-1" forall c t. length (intersperse c t) = max 0 (mul 2 (length t) - 1) "TEXT length/intercalate -> n*length" forall s ts. length (intercalate s ts) = let lenS = length s in max 0 (P.sum (P.map (\t -> length t + lenS) ts) - lenS) #-} -- | /O(min(n,c))/ Compare the count of characters in a 'Text' to a number. -- -- @ -- 'compareLength' t c = 'P.compare' ('length' t) c -- @ -- -- This function gives the same answer as comparing against the result -- of 'length', but can short circuit if the count of characters is -- greater than the number, and hence be more efficient. compareLength :: Text -> Int -> Ordering compareLength t c = S.compareLengthI (stream t) c {-# INLINE [1] compareLength #-} {-# RULES "TEXT compareN/length -> compareLength" [~1] forall t n. compare (length t) n = compareLength t n #-} {-# RULES "TEXT ==N/length -> compareLength/==EQ" [~1] forall t n. eqInt (length t) n = compareLength t n == EQ #-} {-# RULES "TEXT /=N/length -> compareLength//=EQ" [~1] forall t n. neInt (length t) n = compareLength t n /= EQ #-} {-# RULES "TEXT compareLength/==LT" [~1] forall t n. ltInt (length t) n = compareLength t n == LT #-} {-# RULES "TEXT <=N/length -> compareLength//=GT" [~1] forall t n. leInt (length t) n = compareLength t n /= GT #-} {-# RULES "TEXT >N/length -> compareLength/==GT" [~1] forall t n. gtInt (length t) n = compareLength t n == GT #-} {-# RULES "TEXT >=N/length -> compareLength//=LT" [~1] forall t n. geInt (length t) n = compareLength t n /= LT #-} -- ----------------------------------------------------------------------------- -- * Transformations -- | /O(n)/ 'map' @f@ @t@ is the 'Text' obtained by applying @f@ to -- each element of @t@. -- -- Example: -- -- >>> let message = pack "I am not angry. Not at all." -- >>> T.map (\c -> if c == '.' then '!' else c) message -- "I am not angry! Not at all!" -- -- Performs replacement on invalid scalar values. map :: (Char -> Char) -> Text -> Text map f = go where go (Text src o l) = runST $ do marr <- A.new (l + 4) outer marr (l + 4) o 0 where outer :: forall s. A.MArray s -> Int -> Int -> Int -> ST s Text outer !dst !dstLen = inner where inner !srcOff !dstOff | srcOff >= l + o = do A.shrinkM dst dstOff arr <- A.unsafeFreeze dst return (Text arr 0 dstOff) | dstOff + 4 > dstLen = do let !dstLen' = dstLen + (l + o) - srcOff + 4 dst' <- A.resizeM dst dstLen' outer dst' dstLen' srcOff dstOff | otherwise = do let !(Iter c d) = iterArray src srcOff d' <- unsafeWrite dst dstOff (safe (f c)) inner (srcOff + d) (dstOff + d') {-# INLINE [1] map #-} {-# RULES "TEXT map/map -> map" forall f g t. map f (map g t) = map (f . safe . g) t #-} -- | /O(n)/ The 'intercalate' function takes a 'Text' and a list of -- 'Text's and concatenates the list after interspersing the first -- argument between each element of the list. -- -- Example: -- -- >>> T.intercalate "NI!" ["We", "seek", "the", "Holy", "Grail"] -- "WeNI!seekNI!theNI!HolyNI!Grail" intercalate :: Text -> [Text] -> Text intercalate t = concat . L.intersperse t {-# INLINE [1] intercalate #-} -- | /O(n)/ The 'intersperse' function takes a character and places it -- between the characters of a 'Text'. -- -- Example: -- -- >>> T.intersperse '.' "SHIELD" -- "S.H.I.E.L.D" -- -- Performs replacement on invalid scalar values. intersperse :: Char -> Text -> Text intersperse c t@(Text src o l) = if l == 0 then mempty else runST $ do let !cLen = utf8Length c dstLen = l + length t P.* cLen dst <- A.new dstLen let writeSep = case cLen of 1 -> \dstOff -> A.unsafeWrite dst dstOff (ord8 c) 2 -> let (c0, c1) = ord2 c in \dstOff -> do A.unsafeWrite dst dstOff c0 A.unsafeWrite dst (dstOff + 1) c1 3 -> let (c0, c1, c2) = ord3 c in \dstOff -> do A.unsafeWrite dst dstOff c0 A.unsafeWrite dst (dstOff + 1) c1 A.unsafeWrite dst (dstOff + 2) c2 _ -> let (c0, c1, c2, c3) = ord4 c in \dstOff -> do A.unsafeWrite dst dstOff c0 A.unsafeWrite dst (dstOff + 1) c1 A.unsafeWrite dst (dstOff + 2) c2 A.unsafeWrite dst (dstOff + 3) c3 let go !srcOff !dstOff = if srcOff >= o + l then return () else do let m0 = A.unsafeIndex src srcOff m1 = A.unsafeIndex src (srcOff + 1) m2 = A.unsafeIndex src (srcOff + 2) m3 = A.unsafeIndex src (srcOff + 3) !d = utf8LengthByLeader m0 case d of 1 -> do A.unsafeWrite dst dstOff m0 writeSep (dstOff + 1) go (srcOff + 1) (dstOff + 1 + cLen) 2 -> do A.unsafeWrite dst dstOff m0 A.unsafeWrite dst (dstOff + 1) m1 writeSep (dstOff + 2) go (srcOff + 2) (dstOff + 2 + cLen) 3 -> do A.unsafeWrite dst dstOff m0 A.unsafeWrite dst (dstOff + 1) m1 A.unsafeWrite dst (dstOff + 2) m2 writeSep (dstOff + 3) go (srcOff + 3) (dstOff + 3 + cLen) _ -> do A.unsafeWrite dst dstOff m0 A.unsafeWrite dst (dstOff + 1) m1 A.unsafeWrite dst (dstOff + 2) m2 A.unsafeWrite dst (dstOff + 3) m3 writeSep (dstOff + 4) go (srcOff + 4) (dstOff + 4 + cLen) go o 0 arr <- A.unsafeFreeze dst return (Text arr 0 (dstLen - cLen)) {-# INLINE [1] intersperse #-} -- | /O(n)/ Reverse the characters of a string. -- -- Example: -- -- >>> T.reverse "desrever" -- "reversed" reverse :: #if defined(ASSERTS) HasCallStack => #endif Text -> Text reverse (Text (A.ByteArray ba) off len) = runST $ do marr@(A.MutableByteArray mba) <- A.new len unsafeIOToST $ c_reverse mba ba (intToCSize off) (intToCSize len) brr <- A.unsafeFreeze marr return $ Text brr 0 len {-# INLINE reverse #-} -- | The input buffer (src :: ByteArray#, off :: CSize, len :: CSize) -- must specify a valid UTF-8 sequence, this condition is not checked. foreign import ccall unsafe "_hs_text_reverse" c_reverse :: Exts.MutableByteArray# s -> ByteArray# -> CSize -> CSize -> IO () -- | /O(m+n)/ Replace every non-overlapping occurrence of @needle@ in -- @haystack@ with @replacement@. -- -- This function behaves as though it was defined as follows: -- -- @ -- replace needle replacement haystack = -- 'intercalate' replacement ('splitOn' needle haystack) -- @ -- -- As this suggests, each occurrence is replaced exactly once. So if -- @needle@ occurs in @replacement@, that occurrence will /not/ itself -- be replaced recursively: -- -- >>> replace "oo" "foo" "oo" -- "foo" -- -- In cases where several instances of @needle@ overlap, only the -- first one will be replaced: -- -- >>> replace "ofo" "bar" "ofofo" -- "barfo" -- -- In (unlikely) bad cases, this function's time complexity degrades -- towards /O(n*m)/. replace :: HasCallStack => Text -- ^ @needle@ to search for. If this string is empty, an -- error will occur. -> Text -- ^ @replacement@ to replace @needle@ with. -> Text -- ^ @haystack@ in which to search. -> Text replace needle@(Text _ _ neeLen) (Text repArr repOff repLen) haystack@(Text hayArr hayOff hayLen) | neeLen == 0 = emptyError "replace" | L.null ixs = haystack | len > 0 = Text (A.run x) 0 len | otherwise = empty where ixs = indices needle haystack len = hayLen - (neeLen - repLen) `mul` L.length ixs x :: ST s (A.MArray s) x = do marr <- A.new len let loop (i:is) o d = do let d0 = d + i - o d1 = d0 + repLen A.copyI (i - o) marr d hayArr (hayOff+o) A.copyI repLen marr d0 repArr repOff loop is (i + neeLen) d1 loop [] o d = A.copyI (len - d) marr d hayArr (hayOff+o) loop ixs 0 0 return marr -- ---------------------------------------------------------------------------- -- ** Case conversions (folds) -- $case -- -- When case converting 'Text' values, do not use combinators like -- @map toUpper@ to case convert each character of a string -- individually, as this gives incorrect results according to the -- rules of some writing systems. The whole-string case conversion -- functions from this module, such as @toUpper@, obey the correct -- case conversion rules. As a result, these functions may map one -- input character to two or three output characters. For examples, -- see the documentation of each function. -- -- /Note/: In some languages, case conversion is a locale- and -- context-dependent operation. The case conversion functions in this -- module are /not/ locale sensitive. Programs that require locale -- sensitivity should use appropriate versions of the -- . -- | /O(n)/ Convert a string to folded case. -- -- This function is mainly useful for performing caseless (also known -- as case insensitive) string comparisons. -- -- A string @x@ is a caseless match for a string @y@ if and only if: -- -- @toCaseFold x == toCaseFold y@ -- -- The result string may be longer than the input string, and may -- differ from applying 'toLower' to the input string. For instance, -- the Armenian small ligature \"ﬓ\" (men now, U+FB13) is case -- folded to the sequence \"մ\" (men, U+0574) followed by -- \"ն\" (now, U+0576), while the Greek \"µ\" (micro sign, -- U+00B5) is case folded to \"μ\" (small letter mu, U+03BC) -- instead of itself. toCaseFold :: Text -> Text toCaseFold t = unstream (S.toCaseFold (stream t)) {-# INLINE toCaseFold #-} -- | /O(n)/ Convert a string to lower case, using simple case -- conversion. -- -- The result string may be longer than the input string. For -- instance, \"İ\" (Latin capital letter I with dot above, -- U+0130) maps to the sequence \"i\" (Latin small letter i, U+0069) -- followed by \" ̇\" (combining dot above, U+0307). toLower :: Text -> Text toLower t = unstream (S.toLower (stream t)) {-# INLINE toLower #-} -- | /O(n)/ Convert a string to upper case, using simple case -- conversion. -- -- The result string may be longer than the input string. For -- instance, the German \"ß\" (eszett, U+00DF) maps to the -- two-letter sequence \"SS\". toUpper :: Text -> Text toUpper t = unstream (S.toUpper (stream t)) {-# INLINE toUpper #-} -- | /O(n)/ Convert a string to title case, using simple case -- conversion. -- -- The first letter of the input is converted to title case, as is -- every subsequent letter that immediately follows a non-letter. -- Every letter that immediately follows another letter is converted -- to lower case. -- -- The result string may be longer than the input string. For example, -- the Latin small ligature fl (U+FB02) is converted to the -- sequence Latin capital letter F (U+0046) followed by Latin small -- letter l (U+006C). -- -- /Note/: this function does not take language or culture specific -- rules into account. For instance, in English, different style -- guides disagree on whether the book name \"The Hill of the Red -- Fox\" is correctly title cased—but this function will -- capitalize /every/ word. -- -- @since 1.0.0.0 toTitle :: Text -> Text toTitle t = unstream (S.toTitle (stream t)) {-# INLINE toTitle #-} -- | /O(n)/ Left-justify a string to the given length, using the -- specified fill character on the right. -- Performs replacement on invalid scalar values. -- -- Examples: -- -- >>> justifyLeft 7 'x' "foo" -- "fooxxxx" -- -- >>> justifyLeft 3 'x' "foobar" -- "foobar" justifyLeft :: Int -> Char -> Text -> Text justifyLeft k c t | len >= k = t | otherwise = t `append` replicateChar (k-len) c where len = length t {-# INLINE [1] justifyLeft #-} -- | /O(n)/ Right-justify a string to the given length, using the -- specified fill character on the left. Performs replacement on -- invalid scalar values. -- -- Examples: -- -- >>> justifyRight 7 'x' "bar" -- "xxxxbar" -- -- >>> justifyRight 3 'x' "foobar" -- "foobar" justifyRight :: Int -> Char -> Text -> Text justifyRight k c t | len >= k = t | otherwise = replicateChar (k-len) c `append` t where len = length t {-# INLINE justifyRight #-} -- | /O(n)/ Center a string to the given length, using the specified -- fill character on either side. Performs replacement on invalid -- scalar values. -- -- Examples: -- -- >>> center 8 'x' "HS" -- "xxxHSxxx" center :: Int -> Char -> Text -> Text center k c t | len >= k = t | otherwise = replicateChar l c `append` t `append` replicateChar r c where len = length t d = k - len r = d `quot` 2 l = d - r {-# INLINE center #-} -- | /O(n)/ The 'transpose' function transposes the rows and columns -- of its 'Text' argument. Note that this function uses 'pack', -- 'unpack', and the list version of transpose, and is thus not very -- efficient. -- -- Examples: -- -- >>> transpose ["green","orange"] -- ["go","rr","ea","en","ng","e"] -- -- >>> transpose ["blue","red"] -- ["br","le","ud","e"] transpose :: [Text] -> [Text] transpose ts = P.map pack (L.transpose (P.map unpack ts)) -- ----------------------------------------------------------------------------- -- * Reducing 'Text's (folds) -- | /O(n)/ 'foldl', applied to a binary operator, a starting value -- (typically the left-identity of the operator), and a 'Text', -- reduces the 'Text' using the binary operator, from left to right. foldl :: (a -> Char -> a) -> a -> Text -> a foldl f z t = S.foldl f z (stream t) {-# INLINE foldl #-} -- | /O(n)/ A strict version of 'foldl'. foldl' :: (a -> Char -> a) -> a -> Text -> a foldl' f z t = S.foldl' f z (stream t) {-# INLINE foldl' #-} -- | /O(n)/ A variant of 'foldl' that has no starting value argument, -- and thus must be applied to a non-empty 'Text'. foldl1 :: HasCallStack => (Char -> Char -> Char) -> Text -> Char foldl1 f t = S.foldl1 f (stream t) {-# INLINE foldl1 #-} -- | /O(n)/ A strict version of 'foldl1'. foldl1' :: HasCallStack => (Char -> Char -> Char) -> Text -> Char foldl1' f t = S.foldl1' f (stream t) {-# INLINE foldl1' #-} -- | /O(n)/ 'foldr', applied to a binary operator, a starting value -- (typically the right-identity of the operator), and a 'Text', -- reduces the 'Text' using the binary operator, from right to left. -- -- If the binary operator is strict in its second argument, use 'foldr'' -- instead. -- -- 'foldr' is lazy like 'Data.List.foldr' for lists: evaluation actually -- traverses the 'Text' from left to right, only as far as it needs to. -- -- For example, 'head' can be defined with /O(1)/ complexity using 'foldr': -- -- @ -- head :: Text -> Char -- head = foldr const (error "head empty") -- @ -- -- Searches from left to right with short-circuiting behavior can -- also be defined using 'foldr' (/e.g./, 'any', 'all', 'find', 'elem'). foldr :: (Char -> a -> a) -> a -> Text -> a foldr f z t = S.foldr f z (stream t) {-# INLINE foldr #-} -- | /O(n)/ A variant of 'foldr' that has no starting value argument, -- and thus must be applied to a non-empty 'Text'. foldr1 :: HasCallStack => (Char -> Char -> Char) -> Text -> Char foldr1 f t = S.foldr1 f (stream t) {-# INLINE foldr1 #-} -- | /O(n)/ A strict version of 'foldr'. -- -- 'foldr'' evaluates as a right-to-left traversal using constant stack space. -- -- @since 2.0.1 foldr' :: (Char -> a -> a) -> a -> Text -> a foldr' f z t = S.foldl' (P.flip f) z (reverseStream t) {-# INLINE foldr' #-} -- ----------------------------------------------------------------------------- -- ** Special folds -- | /O(n)/ Concatenate a list of 'Text's. concat :: [Text] -> Text concat ts = case ts' of [] -> empty [t] -> t _ -> Text (A.run go) 0 len where ts' = L.filter (not . null) ts len = sumP "concat" $ L.map lengthWord8 ts' go :: ST s (A.MArray s) go = do arr <- A.new len let step i (Text a o l) = A.copyI l arr i a o >> return (i + l) foldM step 0 ts' >> return arr -- | /O(n)/ Map a function over a 'Text' that results in a 'Text', and -- concatenate the results. concatMap :: (Char -> Text) -> Text -> Text concatMap f = concat . foldr ((:) . f) [] {-# INLINE concatMap #-} -- | /O(n)/ 'any' @p@ @t@ determines whether any character in the -- 'Text' @t@ satisfies the predicate @p@. any :: (Char -> Bool) -> Text -> Bool any p t = S.any p (stream t) {-# INLINE any #-} -- | /O(n)/ 'all' @p@ @t@ determines whether all characters in the -- 'Text' @t@ satisfy the predicate @p@. all :: (Char -> Bool) -> Text -> Bool all p t = S.all p (stream t) {-# INLINE all #-} -- | /O(n)/ 'maximum' returns the maximum value from a 'Text', which -- must be non-empty. maximum :: HasCallStack => Text -> Char maximum t = S.maximum (stream t) {-# INLINE maximum #-} -- | /O(n)/ 'minimum' returns the minimum value from a 'Text', which -- must be non-empty. minimum :: HasCallStack => Text -> Char minimum t = S.minimum (stream t) {-# INLINE minimum #-} -- ----------------------------------------------------------------------------- -- * Building 'Text's -- | /O(n)/ 'scanl' is similar to 'foldl', but returns a list of -- successive reduced values from the left. -- Performs replacement on invalid scalar values. -- -- > scanl f z [x1, x2, ...] == [z, z `f` x1, (z `f` x1) `f` x2, ...] -- -- __Properties__ -- -- @'head' ('scanl' f z xs) = z@ -- -- @'last' ('scanl' f z xs) = 'foldl' f z xs@ scanl :: (Char -> Char -> Char) -> Char -> Text -> Text scanl f z t = unstream (S.scanl g z (stream t)) where g a b = safe (f a b) {-# INLINE scanl #-} -- | /O(n)/ 'scanl1' is a variant of 'scanl' that has no starting -- value argument. Performs replacement on invalid scalar values. -- -- > scanl1 f [x1, x2, ...] == [x1, x1 `f` x2, ...] scanl1 :: (Char -> Char -> Char) -> Text -> Text scanl1 f t | null t = empty | otherwise = scanl f (unsafeHead t) (unsafeTail t) {-# INLINE scanl1 #-} -- | /O(n)/ 'scanr' is the right-to-left dual of 'scanl'. Performs -- replacement on invalid scalar values. -- -- > scanr f v == reverse . scanl (flip f) v . reverse scanr :: (Char -> Char -> Char) -> Char -> Text -> Text scanr f z = S.reverse . S.reverseScanr g z . reverseStream where g a b = safe (f a b) {-# INLINE scanr #-} -- | /O(n)/ 'scanr1' is a variant of 'scanr' that has no starting -- value argument. Performs replacement on invalid scalar values. scanr1 :: (Char -> Char -> Char) -> Text -> Text scanr1 f t | null t = empty | otherwise = scanr f (last t) (init t) {-# INLINE scanr1 #-} -- | /O(n)/ Like a combination of 'map' and 'foldl''. Applies a -- function to each element of a 'Text', passing an accumulating -- parameter from left to right, and returns a final 'Text'. Performs -- replacement on invalid scalar values. mapAccumL :: forall a. (a -> Char -> (a, Char)) -> a -> Text -> (a, Text) mapAccumL f z0 = go where go (Text src o l) = runST $ do marr <- A.new (l + 4) outer marr (l + 4) o 0 z0 where outer :: forall s. A.MArray s -> Int -> Int -> Int -> a -> ST s (a, Text) outer !dst !dstLen = inner where inner !srcOff !dstOff !z | srcOff >= l + o = do A.shrinkM dst dstOff arr <- A.unsafeFreeze dst return (z, Text arr 0 dstOff) | dstOff + 4 > dstLen = do let !dstLen' = dstLen + (l + o) - srcOff + 4 dst' <- A.resizeM dst dstLen' outer dst' dstLen' srcOff dstOff z | otherwise = do let !(Iter c d) = iterArray src srcOff (z', c') = f z c d' <- unsafeWrite dst dstOff (safe c') inner (srcOff + d) (dstOff + d') z' {-# INLINE mapAccumL #-} -- | The 'mapAccumR' function behaves like a combination of 'map' and -- a strict 'foldr'; it applies a function to each element of a -- 'Text', passing an accumulating parameter from right to left, and -- returning a final value of this accumulator together with the new -- 'Text'. -- Performs replacement on invalid scalar values. mapAccumR :: forall a. (a -> Char -> (a, Char)) -> a -> Text -> (a, Text) mapAccumR f z0 = go where go (Text src o l) = runST $ do marr <- A.new (l + 4) outer marr (l + o - 1) (l + 4 - 1) z0 where outer :: forall s. A.MArray s -> Int -> Int -> a -> ST s (a, Text) outer !dst = inner where inner !srcOff !dstOff !z | srcOff < o = do dstLen <- A.getSizeofMArray dst arr <- A.unsafeFreeze dst return (z, Text arr (dstOff + 1) (dstLen - dstOff - 1)) | dstOff < 3 = do dstLen <- A.getSizeofMArray dst let !dstLen' = dstLen + (srcOff - o) + 4 dst' <- A.new dstLen' A.copyM dst' (dstLen' - dstLen) dst 0 dstLen outer dst' srcOff (dstOff + dstLen' - dstLen) z | otherwise = do let !(Iter c d) = reverseIterArray src (srcOff) (z', c') = f z c c'' = safe c' !d' = utf8Length c'' dstOff' = dstOff - d' _ <- unsafeWrite dst (dstOff' + 1) c'' inner (srcOff + d) dstOff' z' {-# INLINE mapAccumR #-} -- ----------------------------------------------------------------------------- -- ** Generating and unfolding 'Text's -- | /O(n*m)/ 'replicate' @n@ @t@ is a 'Text' consisting of the input -- @t@ repeated @n@ times. replicate :: Int -> Text -> Text replicate n t@(Text a o l) | n <= 0 || l <= 0 = empty | n == 1 = t | isSingleton t = replicateChar n (unsafeHead t) | otherwise = runST $ do let totalLen = n `mul` l marr <- A.new totalLen A.copyI l marr 0 a o A.tile marr l arr <- A.unsafeFreeze marr return $ Text arr 0 totalLen {-# INLINE [1] replicate #-} {-# RULES "TEXT replicate/singleton -> replicateChar" [~1] forall n c. replicate n (singleton c) = replicateChar n c #-} -- | /O(n)/ 'replicateChar' @n@ @c@ is a 'Text' of length @n@ with @c@ the -- value of every element. replicateChar :: Int -> Char -> Text replicateChar !len !c' | len <= 0 = empty | isAscii c = runST $ do marr <- A.newFilled len (ord c) arr <- A.unsafeFreeze marr return $ Text arr 0 len | otherwise = runST $ do let cLen = utf8Length c totalLen = cLen P.* len marr <- A.new totalLen _ <- unsafeWrite marr 0 c A.tile marr cLen arr <- A.unsafeFreeze marr return $ Text arr 0 totalLen where c = safe c' {-# INLINE replicateChar #-} -- | /O(n)/, where @n@ is the length of the result. The 'unfoldr' -- function is analogous to the List 'L.unfoldr'. 'unfoldr' builds a -- 'Text' from a seed value. The function takes the element and -- returns 'Nothing' if it is done producing the 'Text', otherwise -- 'Just' @(a,b)@. In this case, @a@ is the next 'Char' in the -- string, and @b@ is the seed value for further production. -- Performs replacement on invalid scalar values. unfoldr :: (a -> Maybe (Char,a)) -> a -> Text unfoldr f s = unstream (S.unfoldr (firstf safe . f) s) {-# INLINE unfoldr #-} -- | /O(n)/ Like 'unfoldr', 'unfoldrN' builds a 'Text' from a seed -- value. However, the length of the result should be limited by the -- first argument to 'unfoldrN'. This function is more efficient than -- 'unfoldr' when the maximum length of the result is known and -- correct, otherwise its performance is similar to 'unfoldr'. -- Performs replacement on invalid scalar values. unfoldrN :: Int -> (a -> Maybe (Char,a)) -> a -> Text unfoldrN n f s = unstream (S.unfoldrN n (firstf safe . f) s) {-# INLINE unfoldrN #-} -- ----------------------------------------------------------------------------- -- * Substrings -- | /O(n)/ 'take' @n@, applied to a 'Text', returns the prefix of the -- 'Text' of length @n@, or the 'Text' itself if @n@ is greater than -- the length of the Text. take :: Int -> Text -> Text take n t@(Text arr off len) | n <= 0 = empty | n >= len = t | otherwise = let m = measureOff n t in if m >= 0 then text arr off m else t {-# INLINE [1] take #-} -- | /O(n)/ If @t@ is long enough to contain @n@ characters, 'measureOff' @n@ @t@ -- returns a non-negative number, measuring their size in 'Word8'. Otherwise, -- if @t@ is shorter, return a non-positive number, which is a negated total count -- of 'Char' available in @t@. If @t@ is empty or @n = 0@, return 0. -- -- This function is used to implement 'take', 'drop', 'splitAt' and 'length' -- and is useful on its own in streaming and parsing libraries. -- -- @since 2.0 measureOff :: Int -> Text -> Int measureOff !n (Text (A.ByteArray arr) off len) = if len == 0 then 0 else cSsizeToInt $ unsafeDupablePerformIO $ c_measure_off arr (intToCSize off) (intToCSize len) (intToCSize n) -- | The input buffer (arr :: ByteArray#, off :: CSize, len :: CSize) -- must specify a valid UTF-8 sequence, this condition is not checked. foreign import ccall unsafe "_hs_text_measure_off" c_measure_off :: ByteArray# -> CSize -> CSize -> CSize -> IO CSsize -- | /O(n)/ 'takeEnd' @n@ @t@ returns the suffix remaining after -- taking @n@ characters from the end of @t@. -- -- Examples: -- -- >>> takeEnd 3 "foobar" -- "bar" -- -- @since 1.1.1.0 takeEnd :: Int -> Text -> Text takeEnd n t@(Text arr off len) | n <= 0 = empty | n >= len = t | otherwise = text arr (off+i) (len-i) where i = iterNEnd n t iterNEnd :: Int -> Text -> Int iterNEnd n t@(Text _arr _off len) = loop (len-1) n where loop i !m | m <= 0 = i+1 | i <= 0 = 0 | otherwise = loop (i+d) (m-1) where d = reverseIter_ t i -- | /O(n)/ 'drop' @n@, applied to a 'Text', returns the suffix of the -- 'Text' after the first @n@ characters, or the empty 'Text' if @n@ -- is greater than the length of the 'Text'. drop :: Int -> Text -> Text drop n t@(Text arr off len) | n <= 0 = t | n >= len = empty | otherwise = if m >= 0 then text arr (off+m) (len-m) else mempty where m = measureOff n t {-# INLINE [1] drop #-} -- | /O(n)/ 'dropEnd' @n@ @t@ returns the prefix remaining after -- dropping @n@ characters from the end of @t@. -- -- Examples: -- -- >>> dropEnd 3 "foobar" -- "foo" -- -- @since 1.1.1.0 dropEnd :: Int -> Text -> Text dropEnd n t@(Text arr off len) | n <= 0 = t | n >= len = empty | otherwise = text arr off (iterNEnd n t) -- | /O(n)/ 'takeWhile', applied to a predicate @p@ and a 'Text', -- returns the longest prefix (possibly empty) of elements that -- satisfy @p@. takeWhile :: (Char -> Bool) -> Text -> Text takeWhile p t@(Text arr off len) = loop 0 where loop !i | i >= len = t | p c = loop (i+d) | otherwise = text arr off i where Iter c d = iter t i {-# INLINE [1] takeWhile #-} -- | /O(n)/ 'takeWhileEnd', applied to a predicate @p@ and a 'Text', -- returns the longest suffix (possibly empty) of elements that -- satisfy @p@. -- Examples: -- -- >>> takeWhileEnd (=='o') "foo" -- "oo" -- -- @since 1.2.2.0 takeWhileEnd :: (Char -> Bool) -> Text -> Text takeWhileEnd p t@(Text arr off len) = loop (len-1) len where loop !i !l | l <= 0 = t | p c = loop (i+d) (l+d) | otherwise = text arr (off+l) (len-l) where Iter c d = reverseIter t i {-# INLINE [1] takeWhileEnd #-} -- | /O(n)/ 'dropWhile' @p@ @t@ returns the suffix remaining after -- 'takeWhile' @p@ @t@. dropWhile :: (Char -> Bool) -> Text -> Text dropWhile p t@(Text arr off len) = loop 0 0 where loop !i !l | l >= len = empty | p c = loop (i+d) (l+d) | otherwise = Text arr (off+i) (len-l) where Iter c d = iter t i {-# INLINE [1] dropWhile #-} -- | /O(n)/ 'dropWhileEnd' @p@ @t@ returns the prefix remaining after -- dropping characters that satisfy the predicate @p@ from the end of -- @t@. -- -- Examples: -- -- >>> dropWhileEnd (=='.') "foo..." -- "foo" dropWhileEnd :: (Char -> Bool) -> Text -> Text dropWhileEnd p t@(Text arr off len) = loop (len-1) len where loop !i !l | l <= 0 = empty | p c = loop (i+d) (l+d) | otherwise = Text arr off l where Iter c d = reverseIter t i {-# INLINE [1] dropWhileEnd #-} -- | /O(n)/ 'dropAround' @p@ @t@ returns the substring remaining after -- dropping characters that satisfy the predicate @p@ from both the -- beginning and end of @t@. dropAround :: (Char -> Bool) -> Text -> Text dropAround p = dropWhile p . dropWhileEnd p {-# INLINE [1] dropAround #-} -- | /O(n)/ Remove leading white space from a string. Equivalent to: -- -- > dropWhile isSpace stripStart :: Text -> Text stripStart = dropWhile isSpace {-# INLINE stripStart #-} -- | /O(n)/ Remove trailing white space from a string. Equivalent to: -- -- > dropWhileEnd isSpace stripEnd :: Text -> Text stripEnd = dropWhileEnd isSpace {-# INLINE [1] stripEnd #-} -- | /O(n)/ Remove leading and trailing white space from a string. -- Equivalent to: -- -- > dropAround isSpace strip :: Text -> Text strip = dropAround isSpace {-# INLINE [1] strip #-} -- | /O(n)/ 'splitAt' @n t@ returns a pair whose first element is a -- prefix of @t@ of length @n@, and whose second is the remainder of -- the string. It is equivalent to @('take' n t, 'drop' n t)@. splitAt :: Int -> Text -> (Text, Text) splitAt n t@(Text arr off len) | n <= 0 = (empty, t) | n >= len = (t, empty) | otherwise = let m = measureOff n t in if m >= 0 then (text arr off m, text arr (off+m) (len-m)) else (t, mempty) -- | /O(n)/ 'span', applied to a predicate @p@ and text @t@, returns -- a pair whose first element is the longest prefix (possibly empty) -- of @t@ of elements that satisfy @p@, and whose second is the -- remainder of the text. -- -- >>> T.span (=='0') "000AB" -- ("000","AB") span :: (Char -> Bool) -> Text -> (Text, Text) span p t = case span_ p t of (# hd,tl #) -> (hd,tl) {-# INLINE span #-} -- | /O(n)/ 'break' is like 'span', but the prefix returned is -- over elements that fail the predicate @p@. -- -- >>> T.break (=='c') "180cm" -- ("180","cm") break :: (Char -> Bool) -> Text -> (Text, Text) break p = span (not . p) {-# INLINE break #-} -- | /O(length of prefix)/ 'spanM', applied to a monadic predicate @p@, -- a text @t@, returns a pair @(t1, t2)@ where @t1@ is the longest prefix of -- @t@ whose elements satisfy @p@, and @t2@ is the remainder of the text. -- -- >>> T.spanM (\c -> state $ \i -> (fromEnum c == i, i+1)) "abcefg" `runState` 97 -- (("abc","efg"),101) -- -- 'span' is 'spanM' specialized to 'Data.Functor.Identity.Identity': -- -- @ -- -- for all p :: Char -> Bool -- 'span' p = 'Data.Functor.Identity.runIdentity' . 'spanM' ('pure' . p) -- @ -- -- @since 2.0.1 spanM :: Monad m => (Char -> m Bool) -> Text -> m (Text, Text) spanM p t@(Text arr off len) = go 0 where go !i | i < len = case iterArray arr (off+i) of Iter c l -> do continue <- p c if continue then go (i+l) else pure (text arr off i, text arr (off+i) (len-i)) go _ = pure (t, empty) {-# INLINE spanM #-} -- | /O(length of suffix)/ 'spanEndM', applied to a monadic predicate @p@, -- a text @t@, returns a pair @(t1, t2)@ where @t2@ is the longest suffix of -- @t@ whose elements satisfy @p@, and @t1@ is the remainder of the text. -- -- >>> T.spanEndM (\c -> state $ \i -> (fromEnum c == i, i-1)) "tuvxyz" `runState` 122 -- (("tuv","xyz"),118) -- -- @ -- 'spanEndM' p . 'reverse' = fmap ('Data.Bifunctor.bimap' 'reverse' 'reverse') . 'spanM' p -- @ -- -- @since 2.0.1 spanEndM :: Monad m => (Char -> m Bool) -> Text -> m (Text, Text) spanEndM p t@(Text arr off len) = go (len-1) where go !i | 0 <= i = case reverseIterArray arr (off+i) of Iter c l -> do continue <- p c if continue then go (i+l) else pure (text arr off (i+1), text arr (off+i+1) (len-i-1)) go _ = pure (empty, t) {-# INLINE spanEndM #-} -- | /O(n)/ Group characters in a string according to a predicate. groupBy :: (Char -> Char -> Bool) -> Text -> [Text] groupBy p = loop where loop t@(Text arr off len) | null t = [] | otherwise = text arr off n : loop (text arr (off+n) (len-n)) where Iter c d = iter t 0 n = d + findAIndexOrEnd (not . p c) (Text arr (off+d) (len-d)) -- | Returns the /array/ index (in units of 'Word8') at which a -- character may be found. This is /not/ the same as the logical -- index returned by e.g. 'findIndex'. findAIndexOrEnd :: (Char -> Bool) -> Text -> Int findAIndexOrEnd q t@(Text _arr _off len) = go 0 where go !i | i >= len || q c = i | otherwise = go (i+d) where Iter c d = iter t i -- | /O(n)/ Group characters in a string by equality. group :: Text -> [Text] group = groupBy (==) -- | /O(n)/ Return all initial segments of the given 'Text', shortest -- first. inits :: Text -> [Text] inits t@(Text arr off len) = loop 0 where loop i | i >= len = [t] | otherwise = Text arr off i : loop (i + iter_ t i) -- | /O(n)/ Return all final segments of the given 'Text', longest -- first. tails :: Text -> [Text] tails t | null t = [empty] | otherwise = t : tails (unsafeTail t) -- $split -- -- Splitting functions in this library do not perform character-wise -- copies to create substrings; they just construct new 'Text's that -- are slices of the original. -- | /O(m+n)/ Break a 'Text' into pieces separated by the first 'Text' -- argument (which cannot be empty), consuming the delimiter. An empty -- delimiter is invalid, and will cause an error to be raised. -- -- Examples: -- -- >>> splitOn "\r\n" "a\r\nb\r\nd\r\ne" -- ["a","b","d","e"] -- -- >>> splitOn "aaa" "aaaXaaaXaaaXaaa" -- ["","X","X","X",""] -- -- >>> splitOn "x" "x" -- ["",""] -- -- and -- -- > intercalate s . splitOn s == id -- > splitOn (singleton c) == split (==c) -- -- (Note: the string @s@ to split on above cannot be empty.) -- -- In (unlikely) bad cases, this function's time complexity degrades -- towards /O(n*m)/. splitOn :: HasCallStack => Text -- ^ String to split on. If this string is empty, an error -- will occur. -> Text -- ^ Input text. -> [Text] splitOn pat@(Text _ _ l) src@(Text arr off len) | l <= 0 = emptyError "splitOn" | isSingleton pat = split (== unsafeHead pat) src | otherwise = go 0 (indices pat src) where go !s (x:xs) = text arr (s+off) (x-s) : go (x+l) xs go s _ = [text arr (s+off) (len-s)] {-# INLINE [1] splitOn #-} {-# RULES "TEXT splitOn/singleton -> split/==" [~1] forall c t. splitOn (singleton c) t = split (==c) t #-} -- | /O(n)/ Splits a 'Text' into components delimited by separators, -- where the predicate returns True for a separator element. The -- resulting components do not contain the separators. Two adjacent -- separators result in an empty component in the output. eg. -- -- >>> split (=='a') "aabbaca" -- ["","","bb","c",""] -- -- >>> split (=='a') "" -- [""] split :: (Char -> Bool) -> Text -> [Text] split _ t@(Text _off _arr 0) = [t] split p t = loop t where loop s | null s' = [l] | otherwise = l : loop (unsafeTail s') where (# l, s' #) = span_ (not . p) s {-# INLINE split #-} -- | /O(n)/ Splits a 'Text' into components of length @k@. The last -- element may be shorter than the other chunks, depending on the -- length of the input. Examples: -- -- >>> chunksOf 3 "foobarbaz" -- ["foo","bar","baz"] -- -- >>> chunksOf 4 "haskell.org" -- ["hask","ell.","org"] chunksOf :: Int -> Text -> [Text] chunksOf k = go where go t = case splitAt k t of (a,b) | null a -> [] | otherwise -> a : go b {-# INLINE chunksOf #-} -- ---------------------------------------------------------------------------- -- * Searching ------------------------------------------------------------------------------- -- ** Searching with a predicate -- | /O(n)/ The 'elem' function takes a character and a 'Text', and -- returns 'True' if the element is found in the given 'Text', or -- 'False' otherwise. elem :: Char -> Text -> Bool elem c t = S.any (== c) (stream t) {-# INLINE elem #-} -- | /O(n)/ The 'find' function takes a predicate and a 'Text', and -- returns the first element matching the predicate, or 'Nothing' if -- there is no such element. find :: (Char -> Bool) -> Text -> Maybe Char find p t = S.findBy p (stream t) {-# INLINE find #-} -- | /O(n)/ The 'partition' function takes a predicate and a 'Text', -- and returns the pair of 'Text's with elements which do and do not -- satisfy the predicate, respectively; i.e. -- -- > partition p t == (filter p t, filter (not . p) t) partition :: (Char -> Bool) -> Text -> (Text, Text) partition p t = (filter p t, filter (not . p) t) {-# INLINE partition #-} -- | /O(n)/ 'filter', applied to a predicate and a 'Text', -- returns a 'Text' containing those characters that satisfy the -- predicate. filter :: (Char -> Bool) -> Text -> Text filter p = go where go (Text src o l) = runST $ do -- It's tempting to allocate l elements at once and avoid resizing. -- However, this can be unacceptable in scenarios where a huge array -- is filtered with a rare predicate, resulting in a much shorter buffer. let !dstLen = min l 64 dst <- A.new dstLen outer dst dstLen o 0 where outer :: forall s. A.MArray s -> Int -> Int -> Int -> ST s Text outer !dst !dstLen = inner where inner !srcOff !dstOff | srcOff >= o + l = do A.shrinkM dst dstOff arr <- A.unsafeFreeze dst return (Text arr 0 dstOff) | dstOff + 4 > dstLen = do -- Double size of the buffer, unless it becomes longer than -- source string. Ensure to extend it by least 4 bytes. let !dstLen' = dstLen + max 4 (min (l + o - srcOff) dstLen) dst' <- A.resizeM dst dstLen' outer dst' dstLen' srcOff dstOff -- In case of success, filter writes exactly the same character -- it just read (this is not a case for map, for example). -- We leverage this fact below: no need to decode Char back into UTF8, -- just copy bytes from input. | otherwise = do let m0 = A.unsafeIndex src srcOff m1 = A.unsafeIndex src (srcOff + 1) m2 = A.unsafeIndex src (srcOff + 2) m3 = A.unsafeIndex src (srcOff + 3) !d = utf8LengthByLeader m0 case d of 1 -> do let !c = unsafeChr8 m0 if not (p c) then inner (srcOff + 1) dstOff else do A.unsafeWrite dst dstOff m0 inner (srcOff + 1) (dstOff + 1) 2 -> do let !c = chr2 m0 m1 if not (p c) then inner (srcOff + 2) dstOff else do A.unsafeWrite dst dstOff m0 A.unsafeWrite dst (dstOff + 1) m1 inner (srcOff + 2) (dstOff + 2) 3 -> do let !c = chr3 m0 m1 m2 if not (p c) then inner (srcOff + 3) dstOff else do A.unsafeWrite dst dstOff m0 A.unsafeWrite dst (dstOff + 1) m1 A.unsafeWrite dst (dstOff + 2) m2 inner (srcOff + 3) (dstOff + 3) _ -> do let !c = chr4 m0 m1 m2 m3 if not (p c) then inner (srcOff + 4) dstOff else do A.unsafeWrite dst dstOff m0 A.unsafeWrite dst (dstOff + 1) m1 A.unsafeWrite dst (dstOff + 2) m2 A.unsafeWrite dst (dstOff + 3) m3 inner (srcOff + 4) (dstOff + 4) {-# INLINE [1] filter #-} {-# RULES "TEXT filter/filter -> filter" forall p q t. filter p (filter q t) = filter (\c -> p c && q c) t #-} -- | /O(n+m)/ Find the first instance of @needle@ (which must be -- non-'null') in @haystack@. The first element of the returned tuple -- is the prefix of @haystack@ before @needle@ is matched. The second -- is the remainder of @haystack@, starting with the match. -- -- Examples: -- -- >>> breakOn "::" "a::b::c" -- ("a","::b::c") -- -- >>> breakOn "/" "foobar" -- ("foobar","") -- -- Laws: -- -- > append prefix match == haystack -- > where (prefix, match) = breakOn needle haystack -- -- If you need to break a string by a substring repeatedly (e.g. you -- want to break on every instance of a substring), use 'breakOnAll' -- instead, as it has lower startup overhead. -- -- In (unlikely) bad cases, this function's time complexity degrades -- towards /O(n*m)/. breakOn :: HasCallStack => Text -> Text -> (Text, Text) breakOn pat src@(Text arr off len) | null pat = emptyError "breakOn" | otherwise = case indices pat src of [] -> (src, empty) (x:_) -> (text arr off x, text arr (off+x) (len-x)) {-# INLINE breakOn #-} -- | /O(n+m)/ Similar to 'breakOn', but searches from the end of the -- string. -- -- The first element of the returned tuple is the prefix of @haystack@ -- up to and including the last match of @needle@. The second is the -- remainder of @haystack@, following the match. -- -- >>> breakOnEnd "::" "a::b::c" -- ("a::b::","c") breakOnEnd :: HasCallStack => Text -> Text -> (Text, Text) breakOnEnd pat src = (reverse b, reverse a) where (a,b) = breakOn (reverse pat) (reverse src) {-# INLINE breakOnEnd #-} -- | /O(n+m)/ Find all non-overlapping instances of @needle@ in -- @haystack@. Each element of the returned list consists of a pair: -- -- * The entire string prior to the /k/th match (i.e. the prefix) -- -- * The /k/th match, followed by the remainder of the string -- -- Examples: -- -- >>> breakOnAll "::" "" -- [] -- -- >>> breakOnAll "/" "a/b/c/" -- [("a","/b/c/"),("a/b","/c/"),("a/b/c","/")] -- -- In (unlikely) bad cases, this function's time complexity degrades -- towards /O(n*m)/. -- -- The @needle@ parameter may not be empty. breakOnAll :: HasCallStack => Text -- ^ @needle@ to search for -> Text -- ^ @haystack@ in which to search -> [(Text, Text)] breakOnAll pat src@(Text arr off slen) | null pat = emptyError "breakOnAll" | otherwise = L.map step (indices pat src) where step x = (chunk 0 x, chunk x (slen-x)) chunk !n !l = text arr (n+off) l {-# INLINE breakOnAll #-} ------------------------------------------------------------------------------- -- ** Indexing 'Text's -- $index -- -- If you think of a 'Text' value as an array of 'Char' values (which -- it is not), you run the risk of writing inefficient code. -- -- An idiom that is common in some languages is to find the numeric -- offset of a character or substring, then use that number to split -- or trim the searched string. With a 'Text' value, this approach -- would require two /O(n)/ operations: one to perform the search, and -- one to operate from wherever the search ended. -- -- For example, suppose you have a string that you want to split on -- the substring @\"::\"@, such as @\"foo::bar::quux\"@. Instead of -- searching for the index of @\"::\"@ and taking the substrings -- before and after that index, you would instead use @breakOnAll \"::\"@. -- | /O(n)/ 'Text' index (subscript) operator, starting from 0. index :: HasCallStack => Text -> Int -> Char index t n = S.index (stream t) n {-# INLINE index #-} -- | /O(n)/ The 'findIndex' function takes a predicate and a 'Text' -- and returns the index of the first element in the 'Text' satisfying -- the predicate. findIndex :: (Char -> Bool) -> Text -> Maybe Int findIndex p t = S.findIndex p (stream t) {-# INLINE findIndex #-} -- | /O(n+m)/ The 'count' function returns the number of times the -- query string appears in the given 'Text'. An empty query string is -- invalid, and will cause an error to be raised. -- -- In (unlikely) bad cases, this function's time complexity degrades -- towards /O(n*m)/. count :: HasCallStack => Text -> Text -> Int count pat | null pat = emptyError "count" | isSingleton pat = countChar (unsafeHead pat) | otherwise = L.length . indices pat {-# INLINE [1] count #-} {-# RULES "TEXT count/singleton -> countChar" [~1] forall c t. count (singleton c) t = countChar c t #-} -- | /O(n)/ The 'countChar' function returns the number of times the -- query element appears in the given 'Text'. countChar :: Char -> Text -> Int countChar c t = S.countChar c (stream t) {-# INLINE countChar #-} ------------------------------------------------------------------------------- -- * Zipping -- | /O(n)/ 'zip' takes two 'Text's and returns a list of -- corresponding pairs of bytes. If one input 'Text' is short, -- excess elements of the longer 'Text' are discarded. This is -- equivalent to a pair of 'unpack' operations. zip :: Text -> Text -> [(Char,Char)] zip a b = S.unstreamList $ S.zipWith (,) (stream a) (stream b) {-# INLINE zip #-} -- | /O(n)/ 'zipWith' generalises 'zip' by zipping with the function -- given as the first argument, instead of a tupling function. -- Performs replacement on invalid scalar values. zipWith :: (Char -> Char -> Char) -> Text -> Text -> Text zipWith f t1 t2 = unstream (S.zipWith g (stream t1) (stream t2)) where g a b = safe (f a b) {-# INLINE [1] zipWith #-} -- | /O(n)/ Breaks a 'Text' up into a list of words, delimited by 'Char's -- representing white space. words :: Text -> [Text] words (Text arr off len) = loop 0 0 where loop !start !n | n >= len = if start == n then [] else [Text arr (start + off) (n - start)] -- Spaces in UTF-8 take either 1 byte for 0x09..0x0D + 0x20 | isAsciiSpace w0 = if start == n then loop (n + 1) (n + 1) else Text arr (start + off) (n - start) : loop (n + 1) (n + 1) | w0 < 0x80 = loop start (n + 1) -- or 2 bytes for 0xA0 | w0 == 0xC2, w1 == 0xA0 = if start == n then loop (n + 2) (n + 2) else Text arr (start + off) (n - start) : loop (n + 2) (n + 2) | w0 < 0xE0 = loop start (n + 2) -- or 3 bytes for 0x1680 + 0x2000..0x200A + 0x2028..0x2029 + 0x202F + 0x205F + 0x3000 | w0 == 0xE1 && w1 == 0x9A && w2 == 0x80 || w0 == 0xE2 && (w1 == 0x80 && isSpace (chr3 w0 w1 w2) || w1 == 0x81 && w2 == 0x9F) || w0 == 0xE3 && w1 == 0x80 && w2 == 0x80 = if start == n then loop (n + 3) (n + 3) else Text arr (start + off) (n - start) : loop (n + 3) (n + 3) | otherwise = loop start (n + utf8LengthByLeader w0) where w0 = A.unsafeIndex arr (off + n) w1 = A.unsafeIndex arr (off + n + 1) w2 = A.unsafeIndex arr (off + n + 2) {-# INLINE words #-} -- Adapted from Data.ByteString.Internal.isSpaceWord8 isAsciiSpace :: Word8 -> Bool isAsciiSpace w = w .&. 0x50 == 0 && w < 0x80 && (w == 0x20 || w - 0x09 < 5) {-# INLINE isAsciiSpace #-} -- | /O(n)/ Breaks a 'Text' up into a list of 'Text's at newline characters -- @'\\n'@ (LF, line feed). The resulting strings do not contain newlines. -- -- 'lines' __does not__ treat @'\\r'@ (CR, carriage return) as a newline character. lines :: Text -> [Text] lines (Text arr@(A.ByteArray arr#) off len) = go off where go !n | n >= len + off = [] | delta < 0 = [Text arr n (len + off - n)] | otherwise = Text arr n delta : go (n + delta + 1) where delta = cSsizeToInt $ unsafeDupablePerformIO $ memchr arr# (intToCSize n) (intToCSize (len + off - n)) 0x0A {-# INLINE lines #-} foreign import ccall unsafe "_hs_text_memchr" memchr :: ByteArray# -> CSize -> CSize -> Word8 -> IO CSsize -- | /O(n)/ Joins lines, after appending a terminating newline to -- each. unlines :: [Text] -> Text unlines = concat . L.foldr (\t acc -> t : singleton '\n' : acc) [] {-# INLINE unlines #-} -- | /O(n)/ Joins words using single space characters. unwords :: [Text] -> Text unwords = intercalate (singleton ' ') {-# INLINE unwords #-} -- | /O(n)/ The 'isPrefixOf' function takes two 'Text's and returns -- 'True' if and only if the first is a prefix of the second. isPrefixOf :: Text -> Text -> Bool isPrefixOf a@(Text _ _ alen) b@(Text _ _ blen) = alen <= blen && S.isPrefixOf (stream a) (stream b) {-# INLINE [1] isPrefixOf #-} -- | /O(n)/ The 'isSuffixOf' function takes two 'Text's and returns -- 'True' if and only if the first is a suffix of the second. isSuffixOf :: Text -> Text -> Bool isSuffixOf a@(Text _aarr _aoff alen) b@(Text barr boff blen) = d >= 0 && a == b' where d = blen - alen b' | d == 0 = b | otherwise = Text barr (boff+d) alen {-# INLINE isSuffixOf #-} -- | /O(n+m)/ The 'isInfixOf' function takes two 'Text's and returns -- 'True' if and only if the first is contained, wholly and intact, anywhere -- within the second. -- -- In (unlikely) bad cases, this function's time complexity degrades -- towards /O(n*m)/. isInfixOf :: #if defined(ASSERTS) HasCallStack => #endif Text -> Text -> Bool isInfixOf needle haystack | null needle = True | isSingleton needle = S.elem (unsafeHead needle) . S.stream $ haystack | otherwise = not . L.null . indices needle $ haystack {-# INLINE [1] isInfixOf #-} ------------------------------------------------------------------------------- -- * View patterns -- | /O(n)/ Return the suffix of the second string if its prefix -- matches the entire first string. -- -- Examples: -- -- >>> stripPrefix "foo" "foobar" -- Just "bar" -- -- >>> stripPrefix "" "baz" -- Just "baz" -- -- >>> stripPrefix "foo" "quux" -- Nothing -- -- This is particularly useful with the @ViewPatterns@ extension to -- GHC, as follows: -- -- > {-# LANGUAGE ViewPatterns #-} -- > import Data.Text as T -- > -- > fnordLength :: Text -> Int -- > fnordLength (stripPrefix "fnord" -> Just suf) = T.length suf -- > fnordLength _ = -1 stripPrefix :: Text -> Text -> Maybe Text stripPrefix p@(Text _arr _off plen) t@(Text arr off len) | p `isPrefixOf` t = Just $! text arr (off+plen) (len-plen) | otherwise = Nothing -- | /O(n)/ Find the longest non-empty common prefix of two strings -- and return it, along with the suffixes of each string at which they -- no longer match. -- -- If the strings do not have a common prefix or either one is empty, -- this function returns 'Nothing'. -- -- Examples: -- -- >>> commonPrefixes "foobar" "fooquux" -- Just ("foo","bar","quux") -- -- >>> commonPrefixes "veeble" "fetzer" -- Nothing -- -- >>> commonPrefixes "" "baz" -- Nothing commonPrefixes :: Text -> Text -> Maybe (Text, Text, Text) commonPrefixes !t0@(Text arr0 off0 len0) !t1@(Text arr1 off1 len1) | len0 == 0 = Nothing | len1 == 0 = Nothing | otherwise = go 0 0 where go !i !j | i == len0 = Just (t0, empty, text arr1 (off1 + i) (len1 - i)) | i == len1 = Just (t1, text arr0 (off0 + i) (len0 - i), empty) | a == b = go (i + 1) k | k > 0 = Just (Text arr0 off0 k, Text arr0 (off0 + k) (len0 - k), Text arr1 (off1 + k) (len1 - k)) | otherwise = Nothing where a = A.unsafeIndex arr0 (off0 + i) b = A.unsafeIndex arr1 (off1 + i) isLeader = word8ToInt8 a >= -64 k = if isLeader then i else j {-# INLINE commonPrefixes #-} -- | /O(n)/ Return the prefix of the second string if its suffix -- matches the entire first string. -- -- Examples: -- -- >>> stripSuffix "bar" "foobar" -- Just "foo" -- -- >>> stripSuffix "" "baz" -- Just "baz" -- -- >>> stripSuffix "foo" "quux" -- Nothing -- -- This is particularly useful with the @ViewPatterns@ extension to -- GHC, as follows: -- -- > {-# LANGUAGE ViewPatterns #-} -- > import Data.Text as T -- > -- > quuxLength :: Text -> Int -- > quuxLength (stripSuffix "quux" -> Just pre) = T.length pre -- > quuxLength _ = -1 stripSuffix :: Text -> Text -> Maybe Text stripSuffix p@(Text _arr _off plen) t@(Text arr off len) | p `isSuffixOf` t = Just $! text arr off (len-plen) | otherwise = Nothing -- | Add a list of non-negative numbers. Errors out on overflow. sumP :: String -> [Int] -> Int sumP fun = go 0 where go !a (x:xs) | ax >= 0 = go ax xs | otherwise = overflowError fun where ax = a + x go a _ = a emptyError :: HasCallStack => String -> a emptyError fun = P.error $ "Data.Text." ++ fun ++ ": empty input" overflowError :: HasCallStack => String -> a overflowError fun = P.error $ "Data.Text." ++ fun ++ ": size overflow" -- | /O(n)/ Make a distinct copy of the given string, sharing no -- storage with the original string. -- -- As an example, suppose you read a large string, of which you need -- only a small portion. If you do not use 'copy', the entire original -- array will be kept alive in memory by the smaller string. Making a -- copy \"breaks the link\" to the original array, allowing it to be -- garbage collected if there are no other live references to it. copy :: Text -> Text copy (Text arr off len) = Text (A.run go) 0 len where go :: ST s (A.MArray s) go = do marr <- A.new len A.copyI len marr 0 arr off return marr ord8 :: Char -> Word8 ord8 = P.fromIntegral . ord intToCSize :: Int -> CSize intToCSize = P.fromIntegral cSsizeToInt :: CSsize -> Int cSsizeToInt = P.fromIntegral word8ToInt8 :: Word8 -> Int8 word8ToInt8 = P.fromIntegral ------------------------------------------------- -- NOTE: the named chunk below used by doctest; -- verify the doctests via `doctest -fobject-code Data/Text.hs` -- $setup -- >>> :set -XOverloadedStrings -- >>> import qualified Data.Text as T