{-# LANGUAGE CPP, UndecidableInstances, FlexibleInstances, MultiParamTypeClasses, FunctionalDependencies, TypeSynonymInstances, StandaloneDeriving, GeneralizedNewtypeDeriving #-} module Language.Haskell.TH.Unification (subTerm, Term(..), MonadUnify(..), UnifT, Explicit(..), solveUnification) where #if __GLASGOW_HASKELL__ < 710 import Control.Applicative (Applicative) #endif import Control.Monad import Data.Map as Map hiding (map) import Data.Set as Set (Set, insert, map, minView) import Control.Monad.State.Strict import Control.Monad.Except data Term f v a = App f (Term f v a) (Term f v a) | Atom a | Var v deriving (Eq, Ord, Show) data Explicit f a = AppE f (Explicit f a) (Explicit f a) | AtomE a deriving (Eq, Ord, Show) type Solution f v a = Map v (Explicit f a) data Constraint f v a = Term f v a :==: Term f v a deriving (Eq, Ord, Show) type Constraints f v a = Set (Constraint f v a) newtype UnifT f v a m x = UnifT (StateT (Constraints f v a) (ExceptT String m) x) deriving instance Functor m => Functor (UnifT f v a m) deriving instance (Monad m, Functor m) => Applicative (UnifT f v a m) deriving instance (Monad m) => Monad (UnifT f v a m) deriving instance (Monad m) => MonadState (Constraints f v a) (UnifT f v a m) class Monad m => MonadUnify u m | m -> u where unify :: u -> u -> m () instance (Monad m, Ord a, Ord v, Ord f) => MonadUnify (Term f v a) (UnifT f v a m) where a `unify` b = modify (Set.insert (a :==: b)) instance MonadUnify u m => MonadUnify u (StateT s m) where a `unify` b = lift (a `unify` b) instance MonadTrans (UnifT f v a) where lift = UnifT . lift . lift runUnification :: (Ord a, Ord v, Ord f, Eq f, Eq a, Monad m) => UnifT f v a m x -> m (Either String (Constraints f v a)) runUnification (UnifT m) = runExceptT (execStateT m mempty) solveUnification :: (Ord a, Ord v, Ord f, Eq f, Eq a, Monad m) => Explicit f a -> UnifT f v a m x -> m (Either String (x, Solution f v a)) solveUnification def (UnifT m) = runExceptT (evalStateT m' mempty) where m' = do x <- m ans <- solve def =<< get return (x, ans) solve :: (Ord a, Ord v, Ord f, Eq f, Eq a, Monad m) => Explicit f a -> Constraints f v a -> m (Solution f v a) solve def constrs0 = case Set.minView constrs0 of Just (Var x :==: Var y, constrs) | x == y -> solve def constrs Just (Var x :==: t, constrs) -> subSol def x t `liftM` solve def (substitute x t constrs) Just (t :==: Var y, constrs) -> subSol def y t `liftM` solve def (substitute y t constrs) Just (Atom a :==: Atom b, constrs) | a == b -> solve def constrs | otherwise -> fail "Mismatched atoms" Just (App f1 x1 y1 :==: App f2 x2 y2, constrs) | f1 == f2 -> solve def (Set.insert (x1 :==: x2) (Set.insert (y1 :==: y2) constrs)) | otherwise -> fail "Mismatched functions" Just (_, _) -> fail "Function matched to atom" Nothing -> return empty substitute :: (Ord a, Ord v, Ord f, Eq f, Eq a) => v -> Term f v a -> Constraints f v a -> Constraints f v a substitute v t = Set.map (\ (x :==: y) -> sub x :==: sub y) where sub (Var v') | v == v' = t sub (App f x y) = App f (sub x) (sub y) sub t' = t' subTerm :: Ord v => Explicit f a -> Solution f v a -> Term f v a -> Explicit f a subTerm def sol (Var v) = findWithDefault def v sol subTerm def sol (App f x y) = AppE f (subTerm def sol x) (subTerm def sol y) subTerm _ _ (Atom a) = AtomE a subSol :: (Ord v, Eq f, Eq a) => Explicit f a -> v -> Term f v a -> Solution f v a -> Solution f v a subSol def v t sol = Map.insert v (subTerm def sol t) sol