{-# LANGUAGE CPP #-} {-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE GADTs #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TemplateHaskell #-} {-# LANGUAGE TupleSections #-} {-# OPTIONS_GHC -Wall #-} module Language.Haskell.TH.TypeGraph.TypeInfo ( -- * Type and builders TypeInfo, startTypes, fields, infoMap, synonyms, typeSet , makeTypeInfo -- * Update , typeVertex , typeVertex' , fieldVertex -- * Query , fieldVertices , allVertices ) where #if __GLASGOW_HASKELL__ < 709 import Data.Monoid (mempty) #endif import Control.Lens -- (makeLenses, view) import Control.Monad.Readers (ask, MonadReaders) import Control.Monad.Trans as Monad import Control.Monad.States (execStateT, MonadStates(get, put), StateT) import Data.Foldable as Foldable (mapM_) import Data.List as List (intercalate, map) import Data.Map as Map (findWithDefault, insert, insertWith, Map, toList) import Data.Set.Extra as Set (empty, insert, map, mapM_, member, Set, singleton, toList, union) import Language.Haskell.Exts.Syntax () import Language.Haskell.TH import Language.Haskell.TH.Desugar as DS (DsMonad) import Language.Haskell.TH.Instances () import Language.Haskell.TH.PprLib (ptext) import Language.Haskell.TH.Syntax as TH (Lift(lift), Quasi(..)) import Language.Haskell.TH.TypeGraph.Expand (E(E), ExpandMap, expandType) import Language.Haskell.TH.TypeGraph.Prelude (pprint') import Language.Haskell.TH.TypeGraph.Shape (Field) import Language.Haskell.TH.TypeGraph.Vertex (TGV(..), TGVSimple(..), etype) -- | Information collected about the graph implied by the structure of -- one or more 'Type' values. data TypeInfo = TypeInfo { _startTypes :: [Type] -- ^ The kernel of types from which the others in _typeSet are discovered , _typeSet :: Set Type -- ^ All the types encountered, including embedded types such as the -- 'Maybe' and the 'Int' in @Maybe Int@. , _infoMap :: Map Name Info -- ^ The Info record of all known named types , _expanded :: Map Type (E Type) -- ^ Map of the expansion of all encountered types , _synonyms :: Map (E Type) (Set Name) -- ^ The types with all type synonyms replaced with their expansions. , _fields :: Map (E Type) (Set (Name, Name, Either Int Name)) -- ^ Map from field type to field names } deriving (Show, Eq, Ord) instance Ppr TypeInfo where ppr (TypeInfo {_typeSet = t, _infoMap = i, _expanded = e, _synonyms = s, _fields = f}) = ptext $ intercalate "\n " ["TypeInfo:", ppt, ppi, ppe, pps, ppf] ++ "\n" where ppt = intercalate "\n " ("typeSet:" : concatMap (lines . pprint) (Set.toList t)) ppi = intercalate "\n " ("infoMap:" : concatMap (lines . (\ (name, info) -> show name ++ " -> " ++ pprint info)) (Map.toList i)) ppe = intercalate "\n " ("expanded:" : concatMap (lines . (\ (typ, (E etyp)) -> pprint typ ++ " -> " ++ pprint etyp)) (Map.toList e)) pps = intercalate "\n " ("synonyms:" : concatMap (lines . (\ (typ, ns) -> pprint typ ++ " -> " ++ show ns)) (Map.toList s)) ppf = intercalate "\n " ("fields:" : concatMap (lines . (\ (typ, fs) -> pprint typ ++ " -> " ++ show fs)) (Map.toList f)) $(makeLenses ''TypeInfo) instance Monad m => MonadStates ExpandMap (StateT TypeInfo m) where get = use expanded put x = expanded .= x instance Lift TypeInfo where lift (TypeInfo {_startTypes = st, _typeSet = t, _infoMap = i, _expanded = e, _synonyms = s, _fields = f}) = [| TypeInfo { _startTypes = $(TH.lift st) , _typeSet = $(TH.lift t) , _infoMap = $(TH.lift i) , _expanded = $(TH.lift e) , _synonyms = $(TH.lift s) , _fields = $(TH.lift f) } |] -- | Collect the graph information for one type and all the types -- reachable from it. The extraTypes function parameter allows extra -- edges to be added to the graph other than those implied by the Type -- structure. collectTypeInfo :: forall m. DsMonad m => (Type -> m (Set Type)) -> Type -> StateT TypeInfo m () collectTypeInfo extraTypes typ0 = do doType typ0 where doType :: Type -> StateT TypeInfo m () doType typ = Monad.lift (extraTypes typ) >>= Set.mapM_ doType' . Set.insert typ doType' :: Type -> StateT TypeInfo m () doType' typ = do (s :: Set Type) <- use typeSet case Set.member typ s of True -> return () False -> do typeSet %= Set.insert typ etyp{-@(E etyp')-} <- expandType typ expanded %= Map.insert typ etyp -- expanded %= Map.insert etyp' etyp -- A type is its own expansion, but we shouldn't need this doType'' typ doType'' :: Type -> StateT TypeInfo m () doType'' (ConT name) = do info <- qReify name infoMap %= Map.insert name info doInfo name info doType'' (AppT typ1 typ2) = doType typ1 >> doType typ2 doType'' ListT = return () doType'' (VarT _) = return () doType'' (TupleT _) = return () doType'' typ = error $ "makeTypeInfo: " ++ pprint' typ doInfo :: Name -> Info -> StateT TypeInfo m () doInfo _tname (TyConI dec) = doDec dec doInfo _tname (PrimTyConI _ _ _) = return () doInfo _tname (FamilyI _ _) = return () -- Not sure what to do here doInfo _ info = error $ "makeTypeInfo: " ++ show info doDec :: Dec -> StateT TypeInfo m () doDec (TySynD tname _ typ) = do etyp <- expandType (ConT tname) synonyms %= Map.insertWith union etyp (singleton tname) doType typ doDec (NewtypeD _ tname _ constr _) = doCon tname constr doDec (DataD _ tname _ constrs _) = Foldable.mapM_ (doCon tname) constrs doDec dec = error $ "makeTypeInfo: " ++ pprint' dec doCon :: Name -> Con -> StateT TypeInfo m () doCon tname (ForallC _ _ con) = doCon tname con doCon tname (NormalC cname flds) = Foldable.mapM_ doField (zip (List.map (\n -> (tname, cname, Left n)) ([1..] :: [Int])) (List.map snd flds)) doCon tname (RecC cname flds) = Foldable.mapM_ doField (List.map (\ (fname, _, ftype) -> ((tname, cname, Right fname), ftype)) flds) doCon tname (InfixC (_, lhs) cname (_, rhs)) = Foldable.mapM_ doField [((tname, cname, Left 1), lhs), ((tname, cname, Left 2), rhs)] doField :: ((Name, Name, Either Int Name), Type) -> StateT TypeInfo m () doField (fld, ftyp) = do etyp <- expandType ftyp fields %= Map.insertWith union etyp (singleton fld) doType ftyp -- | Build a TypeInfo value by scanning the supplied types makeTypeInfo :: forall m. DsMonad m => (Type -> m (Set Type)) -> [Type] -> m TypeInfo makeTypeInfo extraTypes types = execStateT (Foldable.mapM_ (collectTypeInfo extraTypes) types) (TypeInfo { _startTypes = types , _typeSet = mempty , _infoMap = mempty , _expanded = mempty , _synonyms = mempty , _fields = mempty}) allVertices :: (Functor m, DsMonad m, MonadReaders TypeInfo m) => Maybe Field -> E Type -> m (Set TGV) allVertices (Just fld) etyp = singleton <$> fieldVertex fld etyp allVertices Nothing etyp = do v <- typeVertex etyp vs <- fieldVertices v return $ Set.insert (TGV {_vsimple = v, _field = Nothing}) vs -- | Find the vertices that involve a particular type - if the field -- is specified it return s singleton, otherwise it returns a set -- containing a vertex one for the type on its own, and one for each -- field containing that type. fieldVertices :: MonadReaders TypeInfo m => TGVSimple -> m (Set TGV) fieldVertices v = do fm <- view fields <$> ask let fs = Map.findWithDefault Set.empty (view etype v) fm return $ Set.map (\fld' -> TGV {_vsimple = v, _field = Just fld'}) fs -- | Build a vertex from the given 'Type' and optional 'Field'. -- vertex :: forall m. (DsMonad m, MonadReaders TypeInfo m) => Maybe Field -> E Type -> m TypeGraphVertex -- vertex fld etyp = maybe (typeVertex etyp) (fieldVertex etyp) fld -- | Build a non-field vertex typeVertex :: MonadReaders TypeInfo m => E Type -> m TGVSimple typeVertex etyp = do sm <- view synonyms <$> ask return $ TGVSimple {_syns = Map.findWithDefault Set.empty etyp sm, _etype = etyp} typeVertex' :: MonadReaders TypeInfo m => E Type -> m TGV typeVertex' etyp = do v <- typeVertex etyp return $ TGV {_vsimple = v, _field = Nothing} -- | Build a vertex associated with a field fieldVertex :: MonadReaders TypeInfo m => Field -> E Type -> m TGV fieldVertex fld' etyp = typeVertex etyp >>= \v -> return $ TGV {_vsimple = v, _field = Just fld'}