
Tidal – Domain specific language for live coding
of pattern

Tidal is a language for live coding pattern, embedded in the Haskell language.
You don’t really have to learn Haskell to use Tidal, but it might help to pick up
an introduction. You could try Graham Hutton’s “Programming in Haskell” or
Miran Lipovača’s “Learn you a Haskell for Great Good” (which has a free online
version). Or, you could just try learning enough by playing around with Tidal.

Tidal does not include a synthesiser, but instead communicates with an external
synthesiser using the Open Sound Control protocol. It has been developed for
use with a particular synthesiser called “dirt”. You’ll need to run it with “jack
audio”.

Currently about the only interface to Tidal is the emacs editor. To install it you’ll
need to put two lines into your .emacs file like this, change ~/projects/tidal/ to
the location of your tidal folder:

(add-to-list ’load-path “~/projects/tidal”) (require ’tidal)

Now open a new file in your tidal folder, called something like “helloworld.tidal”.
To start tidal, you type Ctrl-C then Ctrl-S.

Sequences

Tidal starts with nine connections to the dirt synthesiser, named from d1 to d9.
Here’s a minimal example, that plays a bass drum every loop:

d1 $ sound "bd"

In the above, sound tells us we’re making a pattern of sounds, and "bd" is a
pattern that contains a single sound. bd is a sample of a bass drum. To run the
code, use Ctrl-C then Ctrl-C.

We can pick variations of a sound by adding a slash then a number, for example
this picks the fourth bass drum (it starts with 0):

d1 $ sound "bd/3"

Putting things in quotes actually defines a sequence. For example, the following
gives you a pattern of bass drum then snare:

d1 $ sound "bd sn"

1

When you do Ctrl-C Ctrl-C on the above, you are replacing the previous
pattern with another one on-the-fly. Congratulations, you’re live coding.

The sound function in the above is just one possible parameter that we can send
to the synth. Below show a couple more, pan and vowel:

d1 $ sound "bd sn sn"
|+| vowel "a o e"
|+| pan "0 0.5 1"

NOTE: Ctrl-C Ctrl-C won’t work on the above, because it goes over more
than one line. Instead, do Ctrl-C Ctrl-E to run the whole block. However,
note that there must be empty lines surrounding the block. The lines must be
completely empty, including of spaces (this can be annoying as you can’t see the
spaces).

Note that for pan, when working in stereo, that 0 means hard left, 1 means hard
right, and 0.5 means centre.

When specifying a sequence you can group together several events to play inside
a single event by using square brackets:

d1 $ sound "[bd sn sn] sn"

This is good for creating compound time signatures (sn = snare, cp = clap):

d1 $ sound "[bd sn sn] [cp cp]"

And you put events inside events to create any level of detail:

d1 $ sound "[bd bd] [bd [sn [sn sn] sn] sn]"

You can also layer up several loops, by using commas to separate the different
parts:

d1 $ sound "[bd bd bd, sn cp sn cp]"

This would play the sequence bd bd bd at the same time as sn cp sn cp. Note
that the first sequence only has three events, and the second one has four.
Because tidal ensures both loops fit inside same duration, you end up with a
polyrhythm.

2

Samples

All the samples can be found in Dropbox/bcn/dirt/samples/. Here’s some
samples I’ve collected that you could try:

flick sid can metal future gabba sn mouth co gretsch mt arp h cp
cr newnotes bass crow hc tabla bass0 hh bass1 bass2 oc bass3 ho
odx diphone2 house off ht tink perc bd industrial pluck trump
printshort jazz voodoo birds3 procshort blip drum jvbass psr
wobble drumtraks koy rave bottle kurt latibro rm sax lighter lt

Each one is a folder containing one or more wav files. For example when you
put bd/1 in a sequence, you’re picking up the second wav file in the bd folder. If
you ask for the ninth sample and there are only seven in the folder, it’ll wrap
around and play the second one.

Continuous patterns

As well as making patterns as sequences, we can also use continuous patterns.
This makes particular sense for parameters such as pan (for panning sounds
between speakers) and shape (for adding distortion) which are patterns of
numbers.

d1 $ sound "[bd bd] [bd [sn [sn sn] sn] sn]"
|+| pan sinewave1
|+| shape sinewave1

The above uses the pattern sinewave1 to continuously pan between the left
and right speaker. You could also try out triwave1 and squarewave1. The
functions sinewave, triwave and squarewave also exist, but they go between
-1 and 1, which is often not what you want.

Transforming patterns

Tidal comes into its own when you start building things up with functions which
transform the patterns in various ways.

For example, rev reverses a pattern:

d1 $ rev (sound "[bd bd] [bd [sn [sn sn] sn] sn]")

3

That’s not so exciting, but things get more interesting when this is used in
combination another function. For example every takes two parameters, a
number, a function and a pattern to apply the function to. The number specifies
how often the function is applied to the pattern. For example, the following
reverses the pattern every fourth repetition:

d1 $ every 4 (rev) (sound "[bd bd] [bd [sn [sn sn] sn] sn]")

You can also slow down or speed up the playback of a pattern, this makes it a
quarter of the speed:

d1 $ slow 4 $ sound "[bd bd] [bd [sn [sn sn] sn] sn]"

And this four times the speed:

d1 $ density 4 $ sound "[bd bd] [bd [sn [sn sn] sn] sn]"

Note that slow 0.25 would do exactly the same as density 4.

Again, this can be applied selectively:

d1 $ every 4 (density 4) $ sound "[bd bd] [bd [sn [sn sn] sn] sn]"

Note the use of parenthesis around (density 4), this is needed, to group together
the function density with its parameter 4, before being passed as a parameter
to the function every.

Instead of putting transformations up front, separated by the pattern by the $
symbol, you can put them inside the pattern, for example:

d1 $ sound (every 4 (density 4) "[bd bd] [bd [sn [sn sn] sn] sn]")
|+| pan sinewave1

In the above example the transformation is applied inside the sound parameter
to d1, and therefore has no effect on the pan parameter. Again, parenthesis is
required to both group together (density 4) before passing as a parameter to
every, and also around every and its parameters before passing to its function
sound.

d1 $ sound (every 4 (density 4) "[bd bd] [bd [sn [sn sn] sn] sn]")
|+| pan (slow 16 sinewave1)

In the above, the sinewave pan has been slowed down, so that the transition
between speakers happens over 16 loops.

4

Mapping over patterns

Sometimes you want to transform all the events inside a pattern, and not the
time structure of the pattern itself. For example, if you wanted to pass a sinewave
to shape, but wanted the sinewave to go from 0 to 0.5 rather than from 0 to 1,
you could do this:

d1 $ sound "[bd bd] [bd [sn [sn sn] sn] sn]")
|+| shape ((/ 2) <$> sinewave1)

The above applies the function (/ 2) (which simply means divide by two), to
all the values inside the sinewave1 pattern.

Parameters

These are all the synthesis parameters you can use

• sound - a pattern of strings representing sound sample names (required)

• pan - a pattern of numbers between 0 and 1, from left to right (assuming
stereo)

• shape - wave shaping distortion, a pattern of numbers from 0 for no
distortion up to 1 for loads of distortion

• vowel - formant filter to make things sound like vowels, a pattern of either
a, e, i, o or u. Use a rest (~) for no effect.

• cutoff - a pattern of numbers from 0 to 1

• resonance - a pattern of numbers from 0 to 1

• speed - a pattern of numbers from 0 to 1, which changes the speed of
sample playback, i.e. a cheap way of changing pitch

Pattern transformers

brak <pattern>

Make a pattern sound a bit like a breakbeat

Example:

d1 $ sound (brak "bd sn kurt")

5

<number> <~ <pattern> and <number> ~> <pattern>

Rotate a loop either to the left or the right.

Example:

d1 $ every 4 (0.25 <~) $ sound (density 2 "bd sn kurt")

rev <pattern>

Reverse a pattern

Examples:

d1 $ every 3 (rev) $ sound (density 2 "bd sn kurt")

density <number> <pattern> and slow <number> <pattern>

Speed up or slow down a pattern.

Example:

d1 $ sound (density 2 "bd sn kurt")
|+| slow 3 (vowel "a e o")

every <number> <function> <pattern>

Applies to , but only every repetitions.

Example:

d1 $ sound (every 3 (density 2) "bd sn kurt")

interlace <pattern> <pattern>

Shifts between two patterns, using distortion.

Example:

d1 $ interlace (sound "bd sn kurt") (every 3 rev $ sound "bd sn/2")

Plus more to be discovered!

6

	Tidal – Domain specific language for live coding of pattern
	Sequences
	Samples
	Continuous patterns
	Transforming patterns
	Mapping over patterns
	Parameters
	Pattern transformers
	brak <pattern>
	<number> <~ <pattern> and <number> ~> <pattern>
	rev <pattern>
	density <number> <pattern> and slow <number> <pattern>
	every <number> <function> <pattern>
	interlace <pattern> <pattern>

