{-# LANGUAGE NoMonomorphismRestriction #-} module Sound.Tidal.Dirt where import Sound.OSC.FD (Datum) import qualified Data.Map as Map import Control.Applicative import Control.Concurrent.MVar --import Visual import Data.Colour.SRGB import Data.Colour.Names import Data.Hashable import Data.Bits import Data.Maybe import Data.Fixed import Data.Ratio import Sound.Tidal.Stream import Sound.Tidal.OscStream import Sound.Tidal.Pattern import Sound.Tidal.Parse import Sound.Tidal.Params import Sound.Tidal.Time import Sound.Tidal.Tempo import Sound.Tidal.Transition (transition, wash) import Sound.Tidal.Utils (enumerate) dirt :: Shape dirt = Shape { params = [ s_p, offset_p, begin_p, end_p, speed_p, pan_p, velocity_p, vowel_p, cutoff_p, resonance_p, accelerate_p, shape_p, kriole_p, gain_p, cut_p, delay_p, delaytime_p, delayfeedback_p, crush_p, coarse_p, hcutoff_p, hresonance_p, bandf_p, bandq_p, unit_p, loop_p, n_p, attack_p, hold_p, release_p ], cpsStamp = True, latency = 0.3 } dirtSlang = OscSlang { path = "/play", timestamp = MessageStamp, namedParams = False, preamble = [] } superDirtSlang = dirtSlang { timestamp = BundleStamp, path = "/play2", namedParams = True } superDirtBackend port = do s <- makeConnection "127.0.0.1" port superDirtSlang return $ Backend s (\_ _ _ -> return ()) superDirtState port = do backend <- superDirtBackend port Sound.Tidal.Stream.state backend dirt dirtBackend = do s <- makeConnection "127.0.0.1" 7771 dirtSlang return $ Backend s (\_ _ _ -> return ()) -- dirtstart name = start "127.0.0.1" 7771 dirt dirtStream = do backend <- dirtBackend stream backend dirt dirtState = do backend <- dirtBackend Sound.Tidal.Stream.state backend dirt dirtSetters :: IO Time -> IO (ParamPattern -> IO (), (Time -> [ParamPattern] -> ParamPattern) -> ParamPattern -> IO ()) dirtSetters getNow = do ds <- dirtState return (setter ds, transition getNow ds) superDirtSetters :: IO Time -> IO (ParamPattern -> IO (), (Time -> [ParamPattern] -> ParamPattern) -> ParamPattern -> IO ()) superDirtSetters getNow = do ds <- superDirtState 57120 return (setter ds, transition getNow ds) superDirts :: [Int] -> IO [(ParamPattern -> IO (), (Time -> [ParamPattern] -> ParamPattern) -> ParamPattern -> IO ())] superDirts ports = do (_, getNow) <- cpsUtils states <- mapM (superDirtState) ports return $ map (\state -> (setter state, transition getNow state)) states -- -- disused parameter.. dirtstream _ = dirtStream -- doubledirt = do remote <- stream "178.77.72.138" 7777 dirt -- local <- stream "192.168.0.102" 7771 dirt -- return $ \p -> do remote p -- local p -- return () dirtToColour :: ParamPattern -> Pattern ColourD dirtToColour p = s where s = fmap (\x -> maybe black (datumToColour) (Map.lookup (param dirt "s") x)) p showToColour :: Show a => a -> ColourD showToColour = stringToColour . show datumToColour :: Value -> ColourD datumToColour = showToColour stringToColour :: String -> ColourD stringToColour s = sRGB (r/256) (g/256) (b/256) where i = (hash s) `mod` 16777216 r = fromIntegral $ (i .&. 0xFF0000) `shiftR` 16; g = fromIntegral $ (i .&. 0x00FF00) `shiftR` 8; b = fromIntegral $ (i .&. 0x0000FF); {- visualcallback :: IO (ParamPattern -> IO ()) visualcallback = do t <- ticker mv <- startVis t let f p = do let p' = dirtToColour p swapMVar mv p' return () return f -} --dirtyvisualstream name = do cb <- visualcallback -- streamcallback cb "127.0.0.1" "127.0.0.1" name "127.0.0.1" 7771 dirt pick :: String -> Int -> String pick name n = name ++ ":" ++ (show n) {- | Striate is a kind of granulator, for example: @ d1 $ striate 3 $ sound "ho ho:2 ho:3 hc" @ This plays the loop the given number of times, but triggering progressive portions of each sample. So in this case it plays the loop three times, the first time playing the first third of each sample, then the second time playing the second third of each sample, etc.. With the highhat samples in the above example it sounds a bit like reverb, but it isn't really. You can also use striate with very long samples, to cut it into short chunks and pattern those chunks. This is where things get towards granular synthesis. The following cuts a sample into 128 parts, plays it over 8 cycles and manipulates those parts by reversing and rotating the loops. @ d1 $ slow 8 $ striate 128 $ sound "bev" @ -} striate :: Pattern Int -> ParamPattern -> ParamPattern striate = temporalParam _striate _striate :: Int -> ParamPattern -> ParamPattern _striate n p = fastcat $ map (\x -> off (fromIntegral x) p) [0 .. n-1] where off i p = p # begin (atom (fromIntegral i / fromIntegral n)) # end (atom (fromIntegral (i+1) / fromIntegral n)) {-| The `striate'` function is a variant of `striate` with an extra parameter, which specifies the length of each part. The `striate'` function still scans across the sample over a single cycle, but if each bit is longer, it creates a sort of stuttering effect. For example the following will cut the bev sample into 32 parts, but each will be 1/16th of a sample long: @ d1 $ slow 32 $ striate' 32 (1/16) $ sound "bev" @ Note that `striate` uses the `begin` and `end` parameters internally. This means that if you're using `striate` (or `striate'`) you probably shouldn't also specify `begin` or `end`. -} striate' :: Int -> Double -> ParamPattern -> ParamPattern striate' n f p = fastcat $ map (\x -> off (fromIntegral x) p) [0 .. n-1] where off i p = p # begin (atom (slot * i) :: Pattern Double) # end (atom ((slot * i) + f) :: Pattern Double) slot = (1 - f) / (fromIntegral n) {- | like `striate`, but with an offset to the begin and end values -} striateO :: Int -> Double -> ParamPattern -> ParamPattern striateO n o p = _striate n p |+| begin (atom o :: Pattern Double) |+| end (atom o :: Pattern Double) {- | Just like `striate`, but also loops each sample chunk a number of times specified in the second argument. The primed version is just like `striate'`, where the loop count is the third argument. For example: @ d1 $ striateL' 3 0.125 4 $ sound "feel sn:2" @ Like `striate`, these use the `begin` and `end` parameters internally, as well as the `loop` parameter for these versions. -} striateL :: Int -> Int -> ParamPattern -> ParamPattern striateL n l p = _striate n p # loop (atom $ fromIntegral l) striateL' n f l p = striate' n f p # loop (atom $ fromIntegral l) metronome = _slow 2 $ sound (p "[odx, [hh]*8]") {-| Also degrades the current pattern and undegrades the next. To change the number of cycles the transition takes, you can use @clutchIn@ like so: @ d1 $ sound "bd(5,8)" t1 (clutchIn 8) $ sound "[hh*4, odx(3,8)]" @ will take 8 cycles for the transition. -} clutchIn :: Time -> Time -> [Pattern a] -> Pattern a clutchIn _ _ [] = silence clutchIn _ _ (p:[]) = p clutchIn t now (p:p':_) = overlay (fadeOut' now t p') (fadeIn' now t p) {-| Degrades the current pattern while undegrading the next. This is like @xfade@ but not by gain of samples but by randomly removing events from the current pattern and slowly adding back in missing events from the next one. @ d1 $ sound "bd(3,8)" t1 clutch $ sound "[hh*4, odx(3,8)]" @ @clutch@ takes two cycles for the transition, essentially this is @clutchIn 2@. -} clutch :: Time -> [Pattern a] -> Pattern a clutch = clutchIn 2 {- | crossfades between old and new pattern over given number of cycles, e.g.: @ d1 $ sound "bd sn" t1 (xfadeIn 16) $ sound "jvbass*3" @ Will fade over 16 cycles from "bd sn" to "jvbass*3" -} xfadeIn :: Time -> Time -> [ParamPattern] -> ParamPattern xfadeIn _ _ [] = silence xfadeIn _ _ (p:[]) = p xfadeIn t now (p:p':_) = overlay (p |*| gain (now `rotR` (_slow t envEqR))) (p' |*| gain (now `rotR` (_slow t (envEq)))) {- | Crossfade between old and new pattern over the next two cycles. @ d1 $ sound "bd sn" t1 xfade $ sound "can*3" @ `xfade` is built with `xfadeIn` in this case taking two cycles for the fade. -} xfade :: Time -> [ParamPattern] -> ParamPattern xfade = xfadeIn 2 {- | Stut applies a type of delay to a pattern. It has three parameters, which could be called depth, feedback and time. Depth is an integer and the others floating point. This adds a bit of echo: @ d1 $ stut 4 0.5 0.2 $ sound "bd sn" @ The above results in 4 echos, each one 50% quieter than the last, with 1/5th of a cycle between them. It is possible to reverse the echo: @ d1 $ stut 4 0.5 (-0.2) $ sound "bd sn" @ -} stut :: Pattern Integer -> Pattern Double -> Pattern Rational -> ParamPattern -> ParamPattern stut n g t p = unwrap $ (\a b c -> _stut a b c p) <$> n <*> g <*> t _stut :: Integer -> Double -> Rational -> ParamPattern -> ParamPattern _stut steps feedback time p = stack (p:(map (\x -> (((x%steps)*time) `rotR` (p |*| gain (pure $ scale (fromIntegral x))))) [1..(steps-1)])) where scale x = ((+feedback) . (*(1-feedback)) . (/(fromIntegral steps)) . ((fromIntegral steps)-)) x {- | Instead of just decreasing volume to produce echoes, @stut'@ allows to apply a function for each step and overlays the result delayed by the given time. @ d1 $ stut' 2 (1%3) (# vowel "{a e i o u}%2") $ sound "bd sn" @ In this case there are two _overlays_ delayed by 1/3 of a cycle, where each has the @vowel@ filter applied. -} stut' :: Integer -> Time -> (ParamPattern -> ParamPattern) -> ParamPattern -> ParamPattern stut' steps steptime f p | steps <= 0 = p | otherwise = overlay (f (steptime `rotR` stut' (steps-1) steptime f p)) p {-| same as `anticipate` though it allows you to specify the number of cycles until dropping to the new pattern, e.g.: @ d1 $ sound "jvbass(3,8)" t1 (anticipateIn 4) $ sound "jvbass(5,8)" @-} anticipateIn :: Time -> Time -> [ParamPattern] -> ParamPattern anticipateIn t now = wash (spread' (_stut 8 0.2) (now `rotR` (_slow t $ (toRational . (1-)) <$> envL))) t now {- | `anticipate` is an increasing comb filter. Build up some tension, culminating in a _drop_ to the new pattern after 8 cycles. -} anticipate :: Time -> [ParamPattern] -> ParamPattern anticipate = anticipateIn 8 {- | Copies the @n@ parameter to the @orbit@ parameter, so different sound variants or notes go to different orbits in SuperDirt. -} nToOrbit = copyParam n_p orbit_p