// // detail/reactive_socket_service_base.hpp // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // // Copyright (c) 2003-2020 Christopher M. Kohlhoff (chris at kohlhoff dot com) // // Distributed under the Boost Software License, Version 1.0. (See accompanying // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // #ifndef ASIO_DETAIL_REACTIVE_SOCKET_SERVICE_BASE_HPP #define ASIO_DETAIL_REACTIVE_SOCKET_SERVICE_BASE_HPP #if defined(_MSC_VER) && (_MSC_VER >= 1200) # pragma once #endif // defined(_MSC_VER) && (_MSC_VER >= 1200) #include "asio/detail/config.hpp" #if !defined(ASIO_HAS_IOCP) \ && !defined(ASIO_WINDOWS_RUNTIME) #include "asio/buffer.hpp" #include "asio/error.hpp" #include "asio/execution_context.hpp" #include "asio/socket_base.hpp" #include "asio/detail/buffer_sequence_adapter.hpp" #include "asio/detail/memory.hpp" #include "asio/detail/reactive_null_buffers_op.hpp" #include "asio/detail/reactive_socket_recv_op.hpp" #include "asio/detail/reactive_socket_recvmsg_op.hpp" #include "asio/detail/reactive_socket_send_op.hpp" #include "asio/detail/reactive_wait_op.hpp" #include "asio/detail/reactor.hpp" #include "asio/detail/reactor_op.hpp" #include "asio/detail/socket_holder.hpp" #include "asio/detail/socket_ops.hpp" #include "asio/detail/socket_types.hpp" #include "asio/detail/push_options.hpp" namespace asio { namespace detail { class reactive_socket_service_base { public: // The native type of a socket. typedef socket_type native_handle_type; // The implementation type of the socket. struct base_implementation_type { // The native socket representation. socket_type socket_; // The current state of the socket. socket_ops::state_type state_; // Per-descriptor data used by the reactor. reactor::per_descriptor_data reactor_data_; }; // Constructor. ASIO_DECL reactive_socket_service_base(execution_context& context); // Destroy all user-defined handler objects owned by the service. ASIO_DECL void base_shutdown(); // Construct a new socket implementation. ASIO_DECL void construct(base_implementation_type& impl); // Move-construct a new socket implementation. ASIO_DECL void base_move_construct(base_implementation_type& impl, base_implementation_type& other_impl) ASIO_NOEXCEPT; // Move-assign from another socket implementation. ASIO_DECL void base_move_assign(base_implementation_type& impl, reactive_socket_service_base& other_service, base_implementation_type& other_impl); // Destroy a socket implementation. ASIO_DECL void destroy(base_implementation_type& impl); // Determine whether the socket is open. bool is_open(const base_implementation_type& impl) const { return impl.socket_ != invalid_socket; } // Destroy a socket implementation. ASIO_DECL asio::error_code close( base_implementation_type& impl, asio::error_code& ec); // Release ownership of the socket. ASIO_DECL socket_type release( base_implementation_type& impl, asio::error_code& ec); // Get the native socket representation. native_handle_type native_handle(base_implementation_type& impl) { return impl.socket_; } // Cancel all operations associated with the socket. ASIO_DECL asio::error_code cancel( base_implementation_type& impl, asio::error_code& ec); // Determine whether the socket is at the out-of-band data mark. bool at_mark(const base_implementation_type& impl, asio::error_code& ec) const { return socket_ops::sockatmark(impl.socket_, ec); } // Determine the number of bytes available for reading. std::size_t available(const base_implementation_type& impl, asio::error_code& ec) const { return socket_ops::available(impl.socket_, ec); } // Place the socket into the state where it will listen for new connections. asio::error_code listen(base_implementation_type& impl, int backlog, asio::error_code& ec) { socket_ops::listen(impl.socket_, backlog, ec); return ec; } // Perform an IO control command on the socket. template asio::error_code io_control(base_implementation_type& impl, IO_Control_Command& command, asio::error_code& ec) { socket_ops::ioctl(impl.socket_, impl.state_, command.name(), static_cast(command.data()), ec); return ec; } // Gets the non-blocking mode of the socket. bool non_blocking(const base_implementation_type& impl) const { return (impl.state_ & socket_ops::user_set_non_blocking) != 0; } // Sets the non-blocking mode of the socket. asio::error_code non_blocking(base_implementation_type& impl, bool mode, asio::error_code& ec) { socket_ops::set_user_non_blocking(impl.socket_, impl.state_, mode, ec); return ec; } // Gets the non-blocking mode of the native socket implementation. bool native_non_blocking(const base_implementation_type& impl) const { return (impl.state_ & socket_ops::internal_non_blocking) != 0; } // Sets the non-blocking mode of the native socket implementation. asio::error_code native_non_blocking(base_implementation_type& impl, bool mode, asio::error_code& ec) { socket_ops::set_internal_non_blocking(impl.socket_, impl.state_, mode, ec); return ec; } // Wait for the socket to become ready to read, ready to write, or to have // pending error conditions. asio::error_code wait(base_implementation_type& impl, socket_base::wait_type w, asio::error_code& ec) { switch (w) { case socket_base::wait_read: socket_ops::poll_read(impl.socket_, impl.state_, -1, ec); break; case socket_base::wait_write: socket_ops::poll_write(impl.socket_, impl.state_, -1, ec); break; case socket_base::wait_error: socket_ops::poll_error(impl.socket_, impl.state_, -1, ec); break; default: ec = asio::error::invalid_argument; break; } return ec; } // Asynchronously wait for the socket to become ready to read, ready to // write, or to have pending error conditions. template void async_wait(base_implementation_type& impl, socket_base::wait_type w, Handler& handler, const IoExecutor& io_ex) { bool is_continuation = asio_handler_cont_helpers::is_continuation(handler); // Allocate and construct an operation to wrap the handler. typedef reactive_wait_op op; typename op::ptr p = { asio::detail::addressof(handler), op::ptr::allocate(handler), 0 }; p.p = new (p.v) op(success_ec_, handler, io_ex); ASIO_HANDLER_CREATION((reactor_.context(), *p.p, "socket", &impl, impl.socket_, "async_wait")); int op_type; switch (w) { case socket_base::wait_read: op_type = reactor::read_op; break; case socket_base::wait_write: op_type = reactor::write_op; break; case socket_base::wait_error: op_type = reactor::except_op; break; default: p.p->ec_ = asio::error::invalid_argument; reactor_.post_immediate_completion(p.p, is_continuation); p.v = p.p = 0; return; } start_op(impl, op_type, p.p, is_continuation, false, false); p.v = p.p = 0; } // Send the given data to the peer. template size_t send(base_implementation_type& impl, const ConstBufferSequence& buffers, socket_base::message_flags flags, asio::error_code& ec) { typedef buffer_sequence_adapter bufs_type; if (bufs_type::is_single_buffer) { return socket_ops::sync_send1(impl.socket_, impl.state_, bufs_type::first(buffers).data(), bufs_type::first(buffers).size(), flags, ec); } else { bufs_type bufs(buffers); return socket_ops::sync_send(impl.socket_, impl.state_, bufs.buffers(), bufs.count(), flags, bufs.all_empty(), ec); } } // Wait until data can be sent without blocking. size_t send(base_implementation_type& impl, const null_buffers&, socket_base::message_flags, asio::error_code& ec) { // Wait for socket to become ready. socket_ops::poll_write(impl.socket_, impl.state_, -1, ec); return 0; } // Start an asynchronous send. The data being sent must be valid for the // lifetime of the asynchronous operation. template void async_send(base_implementation_type& impl, const ConstBufferSequence& buffers, socket_base::message_flags flags, Handler& handler, const IoExecutor& io_ex) { bool is_continuation = asio_handler_cont_helpers::is_continuation(handler); // Allocate and construct an operation to wrap the handler. typedef reactive_socket_send_op< ConstBufferSequence, Handler, IoExecutor> op; typename op::ptr p = { asio::detail::addressof(handler), op::ptr::allocate(handler), 0 }; p.p = new (p.v) op(success_ec_, impl.socket_, impl.state_, buffers, flags, handler, io_ex); ASIO_HANDLER_CREATION((reactor_.context(), *p.p, "socket", &impl, impl.socket_, "async_send")); start_op(impl, reactor::write_op, p.p, is_continuation, true, ((impl.state_ & socket_ops::stream_oriented) && buffer_sequence_adapter::all_empty(buffers))); p.v = p.p = 0; } // Start an asynchronous wait until data can be sent without blocking. template void async_send(base_implementation_type& impl, const null_buffers&, socket_base::message_flags, Handler& handler, const IoExecutor& io_ex) { bool is_continuation = asio_handler_cont_helpers::is_continuation(handler); // Allocate and construct an operation to wrap the handler. typedef reactive_null_buffers_op op; typename op::ptr p = { asio::detail::addressof(handler), op::ptr::allocate(handler), 0 }; p.p = new (p.v) op(success_ec_, handler, io_ex); ASIO_HANDLER_CREATION((reactor_.context(), *p.p, "socket", &impl, impl.socket_, "async_send(null_buffers)")); start_op(impl, reactor::write_op, p.p, is_continuation, false, false); p.v = p.p = 0; } // Receive some data from the peer. Returns the number of bytes received. template size_t receive(base_implementation_type& impl, const MutableBufferSequence& buffers, socket_base::message_flags flags, asio::error_code& ec) { typedef buffer_sequence_adapter bufs_type; if (bufs_type::is_single_buffer) { return socket_ops::sync_recv1(impl.socket_, impl.state_, bufs_type::first(buffers).data(), bufs_type::first(buffers).size(), flags, ec); } else { bufs_type bufs(buffers); return socket_ops::sync_recv(impl.socket_, impl.state_, bufs.buffers(), bufs.count(), flags, bufs.all_empty(), ec); } } // Wait until data can be received without blocking. size_t receive(base_implementation_type& impl, const null_buffers&, socket_base::message_flags, asio::error_code& ec) { // Wait for socket to become ready. socket_ops::poll_read(impl.socket_, impl.state_, -1, ec); return 0; } // Start an asynchronous receive. The buffer for the data being received // must be valid for the lifetime of the asynchronous operation. template void async_receive(base_implementation_type& impl, const MutableBufferSequence& buffers, socket_base::message_flags flags, Handler& handler, const IoExecutor& io_ex) { bool is_continuation = asio_handler_cont_helpers::is_continuation(handler); // Allocate and construct an operation to wrap the handler. typedef reactive_socket_recv_op< MutableBufferSequence, Handler, IoExecutor> op; typename op::ptr p = { asio::detail::addressof(handler), op::ptr::allocate(handler), 0 }; p.p = new (p.v) op(success_ec_, impl.socket_, impl.state_, buffers, flags, handler, io_ex); ASIO_HANDLER_CREATION((reactor_.context(), *p.p, "socket", &impl, impl.socket_, "async_receive")); start_op(impl, (flags & socket_base::message_out_of_band) ? reactor::except_op : reactor::read_op, p.p, is_continuation, (flags & socket_base::message_out_of_band) == 0, ((impl.state_ & socket_ops::stream_oriented) && buffer_sequence_adapter::all_empty(buffers))); p.v = p.p = 0; } // Wait until data can be received without blocking. template void async_receive(base_implementation_type& impl, const null_buffers&, socket_base::message_flags flags, Handler& handler, const IoExecutor& io_ex) { bool is_continuation = asio_handler_cont_helpers::is_continuation(handler); // Allocate and construct an operation to wrap the handler. typedef reactive_null_buffers_op op; typename op::ptr p = { asio::detail::addressof(handler), op::ptr::allocate(handler), 0 }; p.p = new (p.v) op(success_ec_, handler, io_ex); ASIO_HANDLER_CREATION((reactor_.context(), *p.p, "socket", &impl, impl.socket_, "async_receive(null_buffers)")); start_op(impl, (flags & socket_base::message_out_of_band) ? reactor::except_op : reactor::read_op, p.p, is_continuation, false, false); p.v = p.p = 0; } // Receive some data with associated flags. Returns the number of bytes // received. template size_t receive_with_flags(base_implementation_type& impl, const MutableBufferSequence& buffers, socket_base::message_flags in_flags, socket_base::message_flags& out_flags, asio::error_code& ec) { buffer_sequence_adapter bufs(buffers); return socket_ops::sync_recvmsg(impl.socket_, impl.state_, bufs.buffers(), bufs.count(), in_flags, out_flags, ec); } // Wait until data can be received without blocking. size_t receive_with_flags(base_implementation_type& impl, const null_buffers&, socket_base::message_flags, socket_base::message_flags& out_flags, asio::error_code& ec) { // Wait for socket to become ready. socket_ops::poll_read(impl.socket_, impl.state_, -1, ec); // Clear out_flags, since we cannot give it any other sensible value when // performing a null_buffers operation. out_flags = 0; return 0; } // Start an asynchronous receive. The buffer for the data being received // must be valid for the lifetime of the asynchronous operation. template void async_receive_with_flags(base_implementation_type& impl, const MutableBufferSequence& buffers, socket_base::message_flags in_flags, socket_base::message_flags& out_flags, Handler& handler, const IoExecutor& io_ex) { bool is_continuation = asio_handler_cont_helpers::is_continuation(handler); // Allocate and construct an operation to wrap the handler. typedef reactive_socket_recvmsg_op< MutableBufferSequence, Handler, IoExecutor> op; typename op::ptr p = { asio::detail::addressof(handler), op::ptr::allocate(handler), 0 }; p.p = new (p.v) op(success_ec_, impl.socket_, buffers, in_flags, out_flags, handler, io_ex); ASIO_HANDLER_CREATION((reactor_.context(), *p.p, "socket", &impl, impl.socket_, "async_receive_with_flags")); start_op(impl, (in_flags & socket_base::message_out_of_band) ? reactor::except_op : reactor::read_op, p.p, is_continuation, (in_flags & socket_base::message_out_of_band) == 0, false); p.v = p.p = 0; } // Wait until data can be received without blocking. template void async_receive_with_flags(base_implementation_type& impl, const null_buffers&, socket_base::message_flags in_flags, socket_base::message_flags& out_flags, Handler& handler, const IoExecutor& io_ex) { bool is_continuation = asio_handler_cont_helpers::is_continuation(handler); // Allocate and construct an operation to wrap the handler. typedef reactive_null_buffers_op op; typename op::ptr p = { asio::detail::addressof(handler), op::ptr::allocate(handler), 0 }; p.p = new (p.v) op(success_ec_, handler, io_ex); ASIO_HANDLER_CREATION((reactor_.context(), *p.p, "socket", &impl, impl.socket_, "async_receive_with_flags(null_buffers)")); // Clear out_flags, since we cannot give it any other sensible value when // performing a null_buffers operation. out_flags = 0; start_op(impl, (in_flags & socket_base::message_out_of_band) ? reactor::except_op : reactor::read_op, p.p, is_continuation, false, false); p.v = p.p = 0; } protected: // Open a new socket implementation. ASIO_DECL asio::error_code do_open( base_implementation_type& impl, int af, int type, int protocol, asio::error_code& ec); // Assign a native socket to a socket implementation. ASIO_DECL asio::error_code do_assign( base_implementation_type& impl, int type, const native_handle_type& native_socket, asio::error_code& ec); // Start the asynchronous read or write operation. ASIO_DECL void start_op(base_implementation_type& impl, int op_type, reactor_op* op, bool is_continuation, bool is_non_blocking, bool noop); // Start the asynchronous accept operation. ASIO_DECL void start_accept_op(base_implementation_type& impl, reactor_op* op, bool is_continuation, bool peer_is_open); // Start the asynchronous connect operation. ASIO_DECL void start_connect_op(base_implementation_type& impl, reactor_op* op, bool is_continuation, const socket_addr_type* addr, size_t addrlen); // The selector that performs event demultiplexing for the service. reactor& reactor_; // Cached success value to avoid accessing category singleton. const asio::error_code success_ec_; }; } // namespace detail } // namespace asio #include "asio/detail/pop_options.hpp" #if defined(ASIO_HEADER_ONLY) # include "asio/detail/impl/reactive_socket_service_base.ipp" #endif // defined(ASIO_HEADER_ONLY) #endif // !defined(ASIO_HAS_IOCP) // && !defined(ASIO_WINDOWS_RUNTIME) #endif // ASIO_DETAIL_REACTIVE_SOCKET_SERVICE_BASE_HPP