%-------------------------------------------------------------------------- % File : CAT004-0 : TPTP v7.2.0. Released v1.0.0. % Domain : Category Theory % Axioms : Category theory axioms % Version : [Sco79] axioms : Reduced > Complete. % English : % Refs : [Sco79] Scott (1979), Identity and Existence in Intuitionist L % Source : [ANL] % Names : % Status : Satisfiable % Syntax : Number of clauses : 11 ( 0 non-Horn; 3 unit; 8 RR) % Number of atoms : 21 ( 7 equality) % Maximal clause size : 3 ( 2 average) % Number of predicates : 3 ( 0 propositional; 1-2 arity) % Number of functors : 3 ( 0 constant; 1-2 arity) % Number of variables : 19 ( 2 singleton) % Maximal term depth : 3 ( 2 average) % SPC : % Comments : The dependent axioms have been removed. %-------------------------------------------------------------------------- %----Non-standard in that E(x) stands for "x exists", i.e. a system -for %----intuitionistic logic. Viewed classically, this can be -taken %----as a partitioning of models M into elements of E and -other elements %----of M; then Scott's quantifiers are relativized -to range only over %----E, whereas free variables range over all of -M. %----Quaife has this written: (this looks really weird, but results -from %----having = here stand for equivalence, and it is a strange -fact from %----Scott's conception that all non-existent things are -equivalent. all %----x all y ((x = y) | E(x) | E(y))). %-----Restricted equality axioms cnf(equivalence_implies_existence1,axiom, ( ~ equivalent(X,Y) | there_exists(X) )). cnf(equivalence_implies_existence2,axiom, ( ~ equivalent(X,Y) | X = Y )). cnf(existence_and_equality_implies_equivalence1,axiom, ( ~ there_exists(X) | X != Y | equivalent(X,Y) )). %-----Category theory axioms cnf(domain_has_elements,axiom, ( ~ there_exists(domain(X)) | there_exists(X) )). cnf(codomain_has_elements,axiom, ( ~ there_exists(codomain(X)) | there_exists(X) )). cnf(composition_implies_domain,axiom, ( ~ there_exists(compose(X,Y)) | there_exists(domain(X)) )). cnf(domain_codomain_composition1,axiom, ( ~ there_exists(compose(X,Y)) | domain(X) = codomain(Y) )). cnf(domain_codomain_composition2,axiom, ( ~ there_exists(domain(X)) | domain(X) != codomain(Y) | there_exists(compose(X,Y)) )). cnf(associativity_of_compose,axiom, ( compose(X,compose(Y,Z)) = compose(compose(X,Y),Z) )). cnf(compose_domain,axiom, ( compose(X,domain(X)) = X )). cnf(compose_codomain,axiom, ( compose(codomain(X),X) = X )). %--------------------------------------------------------------------------