%-------------------------------------------------------------------------- % File : FLD001-0 : TPTP v7.2.0. Released v2.1.0. % Domain : Field Theory (Ordered fields) % Axioms : Ordered field axioms (axiom formulation glxx) % Version : [Dra93] axioms : Especial. % English : % Refs : [Dra93] Draeger (1993), Anwendung des Theorembeweisers SETHEO % Source : [Dra93] % Names : % Status : Satisfiable % Syntax : Number of clauses : 27 ( 3 non-Horn; 3 unit; 27 RR) % Number of atoms : 73 ( 0 equality) % Maximal clause size : 4 ( 3 average) % Number of predicates : 3 ( 0 propositional; 1-2 arity) % Number of functors : 6 ( 2 constant; 0-2 arity) % Number of variables : 50 ( 0 singleton) % Maximal term depth : 3 ( 1 average) % SPC : % Comments : The missing equality axioms can be derived. % : Currently it is unknown if this axiomatization is complete. % It is definitely tuned for SETHEO. % Bugfixes : v2.1.0 - Added different_identities clause. %-------------------------------------------------------------------------- cnf(associativity_addition,axiom, ( equalish(add(X,add(Y,Z)),add(add(X,Y),Z)) | ~ defined(X) | ~ defined(Y) | ~ defined(Z) )). cnf(existence_of_identity_addition,axiom, ( equalish(add(additive_identity,X),X) | ~ defined(X) )). cnf(existence_of_inverse_addition,axiom, ( equalish(add(X,additive_inverse(X)),additive_identity) | ~ defined(X) )). cnf(commutativity_addition,axiom, ( equalish(add(X,Y),add(Y,X)) | ~ defined(X) | ~ defined(Y) )). cnf(associativity_multiplication,axiom, ( equalish(multiply(X,multiply(Y,Z)),multiply(multiply(X,Y),Z)) | ~ defined(X) | ~ defined(Y) | ~ defined(Z) )). cnf(existence_of_identity_multiplication,axiom, ( equalish(multiply(multiplicative_identity,X),X) | ~ defined(X) )). cnf(existence_of_inverse_multiplication,axiom, ( equalish(multiply(X,multiplicative_inverse(X)),multiplicative_identity) | ~ defined(X) | equalish(X,additive_identity) )). cnf(commutativity_multiplication,axiom, ( equalish(multiply(X,Y),multiply(Y,X)) | ~ defined(X) | ~ defined(Y) )). cnf(distributivity,axiom, ( equalish(add(multiply(X,Z),multiply(Y,Z)),multiply(add(X,Y),Z)) | ~ defined(X) | ~ defined(Y) | ~ defined(Z) )). cnf(well_definedness_of_addition,axiom, ( defined(add(X,Y)) | ~ defined(X) | ~ defined(Y) )). cnf(well_definedness_of_additive_identity,axiom, ( defined(additive_identity) )). cnf(well_definedness_of_additive_inverse,axiom, ( defined(additive_inverse(X)) | ~ defined(X) )). cnf(well_definedness_of_multiplication,axiom, ( defined(multiply(X,Y)) | ~ defined(X) | ~ defined(Y) )). cnf(well_definedness_of_multiplicative_identity,axiom, ( defined(multiplicative_identity) )). cnf(well_definedness_of_multiplicative_inverse,axiom, ( defined(multiplicative_inverse(X)) | ~ defined(X) | equalish(X,additive_identity) )). cnf(antisymmetry_of_order_relation,axiom, ( equalish(X,Y) | ~ less_or_equal(X,Y) | ~ less_or_equal(Y,X) )). cnf(transitivity_of_order_relation,axiom, ( less_or_equal(X,Z) | ~ less_or_equal(X,Y) | ~ less_or_equal(Y,Z) )). cnf(totality_of_order_relation,axiom, ( less_or_equal(X,Y) | less_or_equal(Y,X) | ~ defined(X) | ~ defined(Y) )). cnf(compatibility_of_order_relation_and_addition,axiom, ( less_or_equal(add(X,Z),add(Y,Z)) | ~ defined(Z) | ~ less_or_equal(X,Y) )). cnf(compatibility_of_order_relation_and_multiplication,axiom, ( less_or_equal(additive_identity,multiply(Y,Z)) | ~ less_or_equal(additive_identity,Y) | ~ less_or_equal(additive_identity,Z) )). cnf(reflexivity_of_equality,axiom, ( equalish(X,X) | ~ defined(X) )). cnf(symmetry_of_equality,axiom, ( equalish(X,Y) | ~ equalish(Y,X) )). cnf(transitivity_of_equality,axiom, ( equalish(X,Z) | ~ equalish(X,Y) | ~ equalish(Y,Z) )). cnf(compatibility_of_equality_and_addition,axiom, ( equalish(add(X,Z),add(Y,Z)) | ~ defined(Z) | ~ equalish(X,Y) )). cnf(compatibility_of_equality_and_multiplication,axiom, ( equalish(multiply(X,Z),multiply(Y,Z)) | ~ defined(Z) | ~ equalish(X,Y) )). cnf(compatibility_of_equality_and_order_relation,axiom, ( less_or_equal(Y,Z) | ~ less_or_equal(X,Z) | ~ equalish(X,Y) )). cnf(different_identities,axiom, ( ~ equalish(additive_identity,multiplicative_identity) )). %--------------------------------------------------------------------------