%-------------------------------------------------------------------------- % File : RNG002-0 : TPTP v7.2.0. Released v1.0.0. % Domain : Ring Theory % Axioms : Ring theory (equality) axioms % Version : [PS81] (equality) axioms : % Reduced & Augmented > Complete. % English : % Refs : [PS81] Peterson & Stickel (1981), Complete Sets of Reductions % Source : [ANL] % Names : % Status : Satisfiable % Syntax : Number of clauses : 14 ( 0 non-Horn; 14 unit; 1 RR) % Number of atoms : 14 ( 14 equality) % Maximal clause size : 1 ( 1 average) % Number of predicates : 1 ( 0 propositional; 2-2 arity) % Number of functors : 4 ( 1 constant; 0-2 arity) % Number of variables : 25 ( 2 singleton) % Maximal term depth : 3 ( 2 average) % SPC : % Comments : Not sure if these are complete. I don't know if the reductions % given in [PS81] are suitable for ATP. %-------------------------------------------------------------------------- %----Existence of left identity for addition cnf(left_identity,axiom, ( add(additive_identity,X) = X )). %----Existence of left additive additive_inverse cnf(left_additive_inverse,axiom, ( add(additive_inverse(X),X) = additive_identity )). %----Distributive property of product over sum cnf(distribute1,axiom, ( multiply(X,add(Y,Z)) = add(multiply(X,Y),multiply(X,Z)) )). cnf(distribute2,axiom, ( multiply(add(X,Y),Z) = add(multiply(X,Z),multiply(Y,Z)) )). %----Inverse of identity is identity, stupid cnf(additive_inverse_identity,axiom, ( additive_inverse(additive_identity) = additive_identity )). %----Inverse of additive_inverse of X is X cnf(additive_inverse_additive_inverse,axiom, ( additive_inverse(additive_inverse(X)) = X )). %----Behavior of 0 and the multiplication operation cnf(multiply_additive_id1,axiom, ( multiply(X,additive_identity) = additive_identity )). cnf(multiply_additive_id2,axiom, ( multiply(additive_identity,X) = additive_identity )). %----Inverse of (x + y) is additive_inverse(x) + additive_inverse(y) cnf(distribute_additive_inverse,axiom, ( additive_inverse(add(X,Y)) = add(additive_inverse(X),additive_inverse(Y)) )). %----x * additive_inverse(y) = additive_inverse (x * y) cnf(multiply_additive_inverse1,axiom, ( multiply(X,additive_inverse(Y)) = additive_inverse(multiply(X,Y)) )). cnf(multiply_additive_inverse2,axiom, ( multiply(additive_inverse(X),Y) = additive_inverse(multiply(X,Y)) )). %----Associativity of addition cnf(associative_addition,axiom, ( add(add(X,Y),Z) = add(X,add(Y,Z)) )). %----Commutativity of addition cnf(commutative_addition,axiom, ( add(X,Y) = add(Y,X) )). %----Associativity of product cnf(associative_multiplication,axiom, ( multiply(multiply(X,Y),Z) = multiply(X,multiply(Y,Z)) )). %--------------------------------------------------------------------------