%-------------------------------------------------------------------------- % File : RNG004-0 : TPTP v7.2.0. Released v1.0.0. % Domain : Ring Theory (Alternative) % Axioms : Alternative ring theory (equality) axioms % Version : [AH90] (equality) axioms. % English : % Refs : [AH90] Anantharaman & Hsiang (1990), Automated Proofs of the % Source : [AH90] % Names : % Status : Satisfiable % Syntax : Number of clauses : 17 ( 0 non-Horn; 15 unit; 3 RR) % Number of atoms : 19 ( 19 equality) % Maximal clause size : 2 ( 1 average) % Number of predicates : 1 ( 0 propositional; 2-2 arity) % Number of functors : 4 ( 1 constant; 0-2 arity) % Number of variables : 32 ( 2 singleton) % Maximal term depth : 3 ( 2 average) % SPC : % Comments : %-------------------------------------------------------------------------- %----There exists an additive identity element [1] cnf(left_additive_identity,axiom, ( add(additive_identity,X) = X )). %----Multiplicative identity [2] & [3] cnf(left_multiplicative_zero,axiom, ( multiply(additive_identity,X) = additive_identity )). cnf(right_multiplicative_zero,axiom, ( multiply(X,additive_identity) = additive_identity )). %----Addition of inverse [4] cnf(add_inverse,axiom, ( add(additive_inverse(X),X) = additive_identity )). %----Sum of inverses [5] cnf(sum_of_inverses,axiom, ( additive_inverse(add(X,Y)) = add(additive_inverse(X),additive_inverse(Y)) )). %----Inverse of additive_inverse of X is X [6] cnf(additive_inverse_additive_inverse,axiom, ( additive_inverse(additive_inverse(X)) = X )). %----Distribution of multiply over add [7] & [8] cnf(multiply_over_add1,axiom, ( multiply(X,add(Y,Z)) = add(multiply(X,Y),multiply(X,Z)) )). cnf(multiply_over_add2,axiom, ( multiply(add(X,Y),Z) = add(multiply(X,Z),multiply(Y,Z)) )). %----Right alternative law [9] cnf(right_alternative,axiom, ( multiply(multiply(X,Y),Y) = multiply(X,multiply(Y,Y)) )). %----Left alternative law [10] cnf(left_alternative,axiom, ( multiply(multiply(X,X),Y) = multiply(X,multiply(X,Y)) )). %----Inverse and product [11] & [12] cnf(inverse_product1,axiom, ( multiply(additive_inverse(X),Y) = additive_inverse(multiply(X,Y)) )). cnf(inverse_product2,axiom, ( multiply(X,additive_inverse(Y)) = additive_inverse(multiply(X,Y)) )). %----Inverse of additive identity [13] cnf(inverse_additive_identity,axiom, ( additive_inverse(additive_identity) = additive_identity )). %----Commutativity for addition cnf(commutativity_for_addition,axiom, ( add(X,Y) = add(Y,X) )). %----Associativity for addition cnf(associativity_for_addition,axiom, ( add(X,add(Y,Z)) = add(add(X,Y),Z) )). %----Left and right cancellation for addition cnf(left_cancellation_for_addition,axiom, ( add(X,Z) != add(Y,Z) | X = Y )). cnf(right_cancellation_for_addition,axiom, ( add(Z,X) != add(Z,Y) | X = Y )). %--------------------------------------------------------------------------