%------------------------------------------------------------------------------ % File : REL001+0 : TPTP v7.2.0. Released v3.6.0. % Domain : Relation Algebra % Axioms : Relation Algebra % Version : [Hoe08] axioms. % English : % Refs : [Mad95] Maddux, R. (1995), Relation-algebraic semantics % : [Hoe08] Hoefner (2008), Email to G. Sutcliffe % Source : [Hoe08] % Names : % Status : Satisfiable % Syntax : Number of formulae : 13 ( 13 unit) % Number of atoms : 13 ( 13 equality) % Maximal formula depth : 4 ( 3 average) % Number of connectives : 0 ( 0 ~ ; 0 |; 0 &) % ( 0 <=>; 0 =>; 0 <=) % ( 0 <~>; 0 ~|; 0 ~&) % Number of predicates : 1 ( 0 propositional; 2-2 arity) % Number of functors : 8 ( 3 constant; 0-2 arity) % Number of variables : 25 ( 0 singleton; 25 !; 0 ?) % Maximal term depth : 5 ( 3 average) % SPC : % Comments : %------------------------------------------------------------------------------ %----Definition of Boolean algebra a la Maddux fof(maddux1_join_commutativity,axiom,( ! [X0,X1] : join(X0,X1) = join(X1,X0) )). fof(maddux2_join_associativity,axiom,( ! [X0,X1,X2] : join(X0,join(X1,X2)) = join(join(X0,X1),X2) )). fof(maddux3_a_kind_of_de_Morgan,axiom,( ! [X0,X1] : X0 = join(complement(join(complement(X0),complement(X1))),complement(join(complement(X0),X1))) )). fof(maddux4_definiton_of_meet,axiom,( ! [X0,X1] : meet(X0,X1) = complement(join(complement(X0),complement(X1))) )). %----Definition of Sequential Composition fof(composition_associativity,axiom,( ! [X0,X1,X2] : composition(X0,composition(X1,X2)) = composition(composition(X0,X1),X2) )). fof(composition_identity,axiom,( ! [X0] : composition(X0,one) = X0 )). fof(composition_distributivity,axiom,( ! [X0,X1,X2] : composition(join(X0,X1),X2) = join(composition(X0,X2),composition(X1,X2)) )). %----Definition of Converse fof(converse_idempotence,axiom,( ! [X0] : converse(converse(X0)) = X0 )). fof(converse_additivity,axiom,( ! [X0,X1] : converse(join(X0,X1)) = join(converse(X0),converse(X1)) )). fof(converse_multiplicativity,axiom,( ! [X0,X1] : converse(composition(X0,X1)) = composition(converse(X1),converse(X0)) )). fof(converse_cancellativity,axiom,( ! [X0,X1] : join(composition(converse(X0),complement(composition(X0,X1))),complement(X1)) = complement(X1) )). %---Definition of Identities (greatest and smallest element) fof(def_top,axiom,( ! [X0] : top = join(X0,complement(X0)) )). fof(def_zero,axiom,( ! [X0] : zero = meet(X0,complement(X0)) )). %------------------------------------------------------------------------------