{-# LANGUAGE CPP #-} #if __GLASGOW_HASKELL__ >= 709 {-# LANGUAGE AutoDeriveTypeable #-} #endif ----------------------------------------------------------------------------- -- | -- Module : Control.Applicative.Lift -- Copyright : (c) Ross Paterson 2010 -- License : BSD-style (see the file LICENSE) -- -- Maintainer : ross@soi.city.ac.uk -- Stability : experimental -- Portability : portable -- -- Adding a new kind of pure computation to an applicative functor. ----------------------------------------------------------------------------- module Control.Applicative.Lift ( -- * Lifting an applicative Lift(..), unLift, mapLift, -- * Collecting errors Errors, runErrors, failure ) where import Data.Functor.Classes import Control.Applicative import Data.Foldable (Foldable(foldMap)) import Data.Functor.Constant import Data.Monoid (Monoid(..)) import Data.Traversable (Traversable(traverse)) -- | Applicative functor formed by adding pure computations to a given -- applicative functor. data Lift f a = Pure a | Other (f a) instance (Eq1 f, Eq a) => Eq (Lift f a) where Pure x1 == Pure x2 = x1 == x2 Other y1 == Other y2 = eq1 y1 y2 _ == _ = False instance (Ord1 f, Ord a) => Ord (Lift f a) where compare (Pure x1) (Pure x2) = compare x1 x2 compare (Pure _) (Other _) = LT compare (Other _) (Pure _) = GT compare (Other y1) (Other y2) = compare1 y1 y2 instance (Read1 f, Read a) => Read (Lift f a) where readsPrec = readsData $ readsUnary "Pure" Pure `mappend` readsUnary1 "Other" Other instance (Show1 f, Show a) => Show (Lift f a) where showsPrec d (Pure x) = showsUnary "Pure" d x showsPrec d (Other y) = showsUnary1 "Other" d y instance (Eq1 f) => Eq1 (Lift f) where eq1 = (==) instance (Ord1 f) => Ord1 (Lift f) where compare1 = compare instance (Read1 f) => Read1 (Lift f) where readsPrec1 = readsPrec instance (Show1 f) => Show1 (Lift f) where showsPrec1 = showsPrec instance (Functor f) => Functor (Lift f) where fmap f (Pure x) = Pure (f x) fmap f (Other y) = Other (fmap f y) instance (Foldable f) => Foldable (Lift f) where foldMap f (Pure x) = f x foldMap f (Other y) = foldMap f y instance (Traversable f) => Traversable (Lift f) where traverse f (Pure x) = Pure <$> f x traverse f (Other y) = Other <$> traverse f y -- | A combination is 'Pure' only if both parts are. instance (Applicative f) => Applicative (Lift f) where pure = Pure Pure f <*> Pure x = Pure (f x) Pure f <*> Other y = Other (f <$> y) Other f <*> Pure x = Other (($ x) <$> f) Other f <*> Other y = Other (f <*> y) -- | A combination is 'Pure' only either part is. instance (Alternative f) => Alternative (Lift f) where empty = Other empty Pure x <|> _ = Pure x Other _ <|> Pure y = Pure y Other x <|> Other y = Other (x <|> y) -- | Projection to the other functor. unLift :: (Applicative f) => Lift f a -> f a unLift (Pure x) = pure x unLift (Other e) = e -- | Apply a transformation to the other computation. mapLift :: (f a -> g a) -> Lift f a -> Lift g a mapLift f (Pure x) = Pure x mapLift f (Other e) = Other (f e) -- | An applicative functor that collects a monoid (e.g. lists) of errors. -- A sequence of computations fails if any of its components do, but -- unlike monads made with 'ExceptT' from "Control.Monad.Trans.Except", -- these computations continue after an error, collecting all the errors. -- -- * @'pure' f '<*>' 'pure' x = 'pure' (f x)@ -- -- * @'pure' f '<*>' 'failure' e = 'failure' e@ -- -- * @'failure' e '<*>' 'pure' x = 'failure' e@ -- -- * @'failure' e1 '<*>' 'failure' e2 = 'failure' (e1 '<>' e2)@ -- type Errors e = Lift (Constant e) -- | Extractor for computations with accumulating errors. -- -- * @'runErrors' ('pure' x) = 'Right' x@ -- -- * @'runErrors' ('failure' e) = 'Left' e@ -- runErrors :: Errors e a -> Either e a runErrors (Other (Constant e)) = Left e runErrors (Pure x) = Right x -- | Report an error. failure :: (Monoid e) => e -> Errors e a failure e = Other (Constant e)