{-# LANGUAGE CPP #-} #if __GLASGOW_HASKELL__ >= 702 {-# LANGUAGE Safe #-} #endif #if __GLASGOW_HASKELL__ >= 710 {-# LANGUAGE AutoDeriveTypeable #-} #endif ----------------------------------------------------------------------------- -- | -- Module : Control.Monad.Trans.Except -- Copyright : (C) 2013 Ross Paterson -- License : BSD-style (see the file LICENSE) -- -- Maintainer : R.Paterson@city.ac.uk -- Stability : experimental -- Portability : portable -- -- This monad transformer extends a monad with the ability throw exceptions. -- -- A sequence of actions terminates normally, producing a value, -- only if none of the actions in the sequence throws an exception. -- If one throws an exception, the rest of the sequence is skipped and -- the composite action exits with that exception. -- -- If the value of the exception is not required, the variant in -- "Control.Monad.Trans.Maybe" may be used instead. ----------------------------------------------------------------------------- module Control.Monad.Trans.Except ( -- * The Except monad Except, except, runExcept, mapExcept, withExcept, -- * The ExceptT monad transformer ExceptT(ExceptT), runExceptT, mapExceptT, withExceptT, -- * Exception operations throwE, catchE, -- * Lifting other operations liftCallCC, liftListen, liftPass, ) where import Control.Monad.IO.Class import Control.Monad.Signatures import Control.Monad.Trans.Class import Data.Functor.Classes import Data.Functor.Identity import Control.Applicative import Control.Monad #if MIN_VERSION_base(4,9,0) import qualified Control.Monad.Fail as Fail #endif import Control.Monad.Fix #if MIN_VERSION_base(4,4,0) import Control.Monad.Zip (MonadZip(mzipWith)) #endif import Data.Foldable (Foldable(foldMap)) import Data.Monoid import Data.Traversable (Traversable(traverse)) -- | The parameterizable exception monad. -- -- Computations are either exceptions or normal values. -- -- The 'return' function returns a normal value, while @>>=@ exits on -- the first exception. For a variant that continues after an error -- and collects all the errors, see 'Control.Applicative.Lift.Errors'. type Except e = ExceptT e Identity -- | Constructor for computations in the exception monad. -- (The inverse of 'runExcept'). except :: Either e a -> Except e a except m = ExceptT (Identity m) -- | Extractor for computations in the exception monad. -- (The inverse of 'except'). runExcept :: Except e a -> Either e a runExcept (ExceptT m) = runIdentity m -- | Map the unwrapped computation using the given function. -- -- * @'runExcept' ('mapExcept' f m) = f ('runExcept' m)@ mapExcept :: (Either e a -> Either e' b) -> Except e a -> Except e' b mapExcept f = mapExceptT (Identity . f . runIdentity) -- | Transform any exceptions thrown by the computation using the given -- function (a specialization of 'withExceptT'). withExcept :: (e -> e') -> Except e a -> Except e' a withExcept = withExceptT -- | A monad transformer that adds exceptions to other monads. -- -- @ExceptT@ constructs a monad parameterized over two things: -- -- * e - The exception type. -- -- * m - The inner monad. -- -- The 'return' function yields a computation that produces the given -- value, while @>>=@ sequences two subcomputations, exiting on the -- first exception. newtype ExceptT e m a = ExceptT (m (Either e a)) instance (Eq e, Eq1 m) => Eq1 (ExceptT e m) where liftEq eq (ExceptT x) (ExceptT y) = liftEq (liftEq eq) x y instance (Ord e, Ord1 m) => Ord1 (ExceptT e m) where liftCompare comp (ExceptT x) (ExceptT y) = liftCompare (liftCompare comp) x y instance (Read e, Read1 m) => Read1 (ExceptT e m) where liftReadsPrec rp rl = readsData $ readsUnaryWith (liftReadsPrec rp' rl') "ExceptT" ExceptT where rp' = liftReadsPrec rp rl rl' = liftReadList rp rl instance (Show e, Show1 m) => Show1 (ExceptT e m) where liftShowsPrec sp sl d (ExceptT m) = showsUnaryWith (liftShowsPrec sp' sl') "ExceptT" d m where sp' = liftShowsPrec sp sl sl' = liftShowList sp sl instance (Eq e, Eq1 m, Eq a) => Eq (ExceptT e m a) where (==) = eq1 instance (Ord e, Ord1 m, Ord a) => Ord (ExceptT e m a) where compare = compare1 instance (Read e, Read1 m, Read a) => Read (ExceptT e m a) where readsPrec = readsPrec1 instance (Show e, Show1 m, Show a) => Show (ExceptT e m a) where showsPrec = showsPrec1 -- | The inverse of 'ExceptT'. runExceptT :: ExceptT e m a -> m (Either e a) runExceptT (ExceptT m) = m -- | Map the unwrapped computation using the given function. -- -- * @'runExceptT' ('mapExceptT' f m) = f ('runExceptT' m)@ mapExceptT :: (m (Either e a) -> n (Either e' b)) -> ExceptT e m a -> ExceptT e' n b mapExceptT f m = ExceptT $ f (runExceptT m) -- | Transform any exceptions thrown by the computation using the -- given function. withExceptT :: (Functor m) => (e -> e') -> ExceptT e m a -> ExceptT e' m a withExceptT f = mapExceptT $ fmap $ either (Left . f) Right instance (Functor m) => Functor (ExceptT e m) where fmap f = ExceptT . fmap (fmap f) . runExceptT instance (Foldable f) => Foldable (ExceptT e f) where foldMap f (ExceptT a) = foldMap (either (const mempty) f) a instance (Traversable f) => Traversable (ExceptT e f) where traverse f (ExceptT a) = ExceptT <$> traverse (either (pure . Left) (fmap Right . f)) a instance (Functor m, Monad m) => Applicative (ExceptT e m) where pure a = ExceptT $ return (Right a) ExceptT f <*> ExceptT v = ExceptT $ do mf <- f case mf of Left e -> return (Left e) Right k -> do mv <- v case mv of Left e -> return (Left e) Right x -> return (Right (k x)) instance (Functor m, Monad m, Monoid e) => Alternative (ExceptT e m) where empty = ExceptT $ return (Left mempty) ExceptT mx <|> ExceptT my = ExceptT $ do ex <- mx case ex of Left e -> liftM (either (Left . mappend e) Right) my Right x -> return (Right x) instance (Monad m) => Monad (ExceptT e m) where #if !(MIN_VERSION_base(4,8,0)) return a = ExceptT $ return (Right a) #endif m >>= k = ExceptT $ do a <- runExceptT m case a of Left e -> return (Left e) Right x -> runExceptT (k x) fail = ExceptT . fail #if MIN_VERSION_base(4,9,0) instance (Fail.MonadFail m) => Fail.MonadFail (ExceptT e m) where fail = ExceptT . Fail.fail #endif instance (Monad m, Monoid e) => MonadPlus (ExceptT e m) where mzero = ExceptT $ return (Left mempty) ExceptT mx `mplus` ExceptT my = ExceptT $ do ex <- mx case ex of Left e -> liftM (either (Left . mappend e) Right) my Right x -> return (Right x) instance (MonadFix m) => MonadFix (ExceptT e m) where mfix f = ExceptT (mfix (runExceptT . f . either (const bomb) id)) where bomb = error "mfix (ExceptT): inner computation returned Left value" instance MonadTrans (ExceptT e) where lift = ExceptT . liftM Right instance (MonadIO m) => MonadIO (ExceptT e m) where liftIO = lift . liftIO #if MIN_VERSION_base(4,4,0) instance (MonadZip m) => MonadZip (ExceptT e m) where mzipWith f (ExceptT a) (ExceptT b) = ExceptT $ mzipWith (liftA2 f) a b #endif -- | Signal an exception value @e@. -- -- * @'runExceptT' ('throwE' e) = 'return' ('Left' e)@ -- -- * @'throwE' e >>= m = 'throwE' e@ throwE :: (Monad m) => e -> ExceptT e m a throwE = ExceptT . return . Left -- | Handle an exception. -- -- * @'catchE' h ('lift' m) = 'lift' m@ -- -- * @'catchE' h ('throwE' e) = h e@ catchE :: (Monad m) => ExceptT e m a -- ^ the inner computation -> (e -> ExceptT e' m a) -- ^ a handler for exceptions in the inner -- computation -> ExceptT e' m a m `catchE` h = ExceptT $ do a <- runExceptT m case a of Left l -> runExceptT (h l) Right r -> return (Right r) -- | Lift a @callCC@ operation to the new monad. liftCallCC :: CallCC m (Either e a) (Either e b) -> CallCC (ExceptT e m) a b liftCallCC callCC f = ExceptT $ callCC $ \ c -> runExceptT (f (\ a -> ExceptT $ c (Right a))) -- | Lift a @listen@ operation to the new monad. liftListen :: (Monad m) => Listen w m (Either e a) -> Listen w (ExceptT e m) a liftListen listen = mapExceptT $ \ m -> do (a, w) <- listen m return $! fmap (\ r -> (r, w)) a -- | Lift a @pass@ operation to the new monad. liftPass :: (Monad m) => Pass w m (Either e a) -> Pass w (ExceptT e m) a liftPass pass = mapExceptT $ \ m -> pass $ do a <- m return $! case a of Left l -> (Left l, id) Right (r, f) -> (Right r, f)