{-# LANGUAGE CPP #-} #if __GLASGOW_HASKELL__ >= 702 {-# LANGUAGE Safe #-} #endif #if __GLASGOW_HASKELL__ >= 710 {-# LANGUAGE AutoDeriveTypeable #-} #endif ----------------------------------------------------------------------------- -- | -- Module : Control.Monad.Trans.RWS.CPS -- Copyright : (c) Daniel Mendler 2016, -- (c) Andy Gill 2001, -- (c) Oregon Graduate Institute of Science and Technology, 2001 -- License : BSD-style (see the file LICENSE) -- -- Maintainer : R.Paterson@city.ac.uk -- Stability : experimental -- Portability : portable -- -- A monad transformer that combines 'ReaderT', 'WriterT' and 'StateT'. -- This version uses continuation-passing-style for the writer part -- to achieve constant space usage. -- For a lazy version with the same interface, -- see "Control.Monad.Trans.RWS.Lazy". ----------------------------------------------------------------------------- module Control.Monad.Trans.RWS.CPS ( -- * The RWS monad RWS, rws, runRWS, evalRWS, execRWS, mapRWS, withRWS, -- * The RWST monad transformer RWST, rwsT, runRWST, evalRWST, execRWST, mapRWST, withRWST, -- * Reader operations reader, ask, local, asks, -- * Writer operations writer, tell, listen, listens, pass, censor, -- * State operations state, get, put, modify, gets, -- * Lifting other operations liftCallCC, liftCallCC', liftCatch, ) where import Control.Applicative import Control.Monad import Control.Monad.Fix import Control.Monad.IO.Class import Control.Monad.Trans.Class import Control.Monad.Signatures import Data.Functor.Identity #if !(MIN_VERSION_base(4,8,0)) import Data.Monoid #endif #if MIN_VERSION_base(4,9,0) import qualified Control.Monad.Fail as Fail #endif -- | A monad containing an environment of type @r@, output of type @w@ -- and an updatable state of type @s@. type RWS r w s = RWST r w s Identity -- | Construct an RWS computation from a function. -- (The inverse of 'runRWS'.) rws :: (Monoid w) => (r -> s -> (a, s, w)) -> RWS r w s a rws f = RWST $ \ r s w -> let (a, s', w') = f r s; wt = w `mappend` w' in wt `seq` return (a, s', wt) {-# INLINE rws #-} -- | Unwrap an RWS computation as a function. -- (The inverse of 'rws'.) runRWS :: (Monoid w) => RWS r w s a -> r -> s -> (a, s, w) runRWS m r s = runIdentity (runRWST m r s) {-# INLINE runRWS #-} -- | Evaluate a computation with the given initial state and environment, -- returning the final value and output, discarding the final state. evalRWS :: (Monoid w) => RWS r w s a -- ^RWS computation to execute -> r -- ^initial environment -> s -- ^initial value -> (a, w) -- ^final value and output evalRWS m r s = let (a, _, w) = runRWS m r s in (a, w) {-# INLINE evalRWS #-} -- | Evaluate a computation with the given initial state and environment, -- returning the final state and output, discarding the final value. execRWS :: (Monoid w) => RWS r w s a -- ^RWS computation to execute -> r -- ^initial environment -> s -- ^initial value -> (s, w) -- ^final state and output execRWS m r s = let (_, s', w) = runRWS m r s in (s', w) {-# INLINE execRWS #-} -- | Map the return value, final state and output of a computation using -- the given function. -- -- * @'runRWS' ('mapRWS' f m) r s = f ('runRWS' m r s)@ mapRWS :: (Monoid w, Monoid w') => ((a, s, w) -> (b, s, w')) -> RWS r w s a -> RWS r w' s b mapRWS f = mapRWST (Identity . f . runIdentity) {-# INLINE mapRWS #-} -- | @'withRWS' f m@ executes action @m@ with an initial environment -- and state modified by applying @f@. -- -- * @'runRWS' ('withRWS' f m) r s = 'uncurry' ('runRWS' m) (f r s)@ withRWS :: (r' -> s -> (r, s)) -> RWS r w s a -> RWS r' w s a withRWS = withRWST {-# INLINE withRWS #-} -- --------------------------------------------------------------------------- -- | A monad transformer adding reading an environment of type @r@, -- collecting an output of type @w@ and updating a state of type @s@ -- to an inner monad @m@. newtype RWST r w s m a = RWST { unRWST :: r -> s -> w -> m (a, s, w) } -- | Construct an RWST computation from a function. -- (The inverse of 'runRWST'.) rwsT :: (Functor m, Monoid w) => (r -> s -> m (a, s, w)) -> RWST r w s m a rwsT f = RWST $ \ r s w -> (\ (a, s', w') -> let wt = w `mappend` w' in wt `seq` (a, s', wt)) <$> f r s {-# INLINE rwsT #-} -- | Unwrap an RWST computation as a function. -- (The inverse of 'rwsT'.) runRWST :: (Monoid w) => RWST r w s m a -> r -> s -> m (a, s, w) runRWST m r s = unRWST m r s mempty {-# INLINE runRWST #-} -- | Evaluate a computation with the given initial state and environment, -- returning the final value and output, discarding the final state. evalRWST :: (Monad m, Monoid w) => RWST r w s m a -- ^computation to execute -> r -- ^initial environment -> s -- ^initial value -> m (a, w) -- ^computation yielding final value and output evalRWST m r s = do (a, _, w) <- runRWST m r s return (a, w) {-# INLINE evalRWST #-} -- | Evaluate a computation with the given initial state and environment, -- returning the final state and output, discarding the final value. execRWST :: (Monad m, Monoid w) => RWST r w s m a -- ^computation to execute -> r -- ^initial environment -> s -- ^initial value -> m (s, w) -- ^computation yielding final state and output execRWST m r s = do (_, s', w) <- runRWST m r s return (s', w) {-# INLINE execRWST #-} -- | Map the inner computation using the given function. -- -- * @'runRWST' ('mapRWST' f m) r s = f ('runRWST' m r s)@ --mapRWST :: (m (a, s, w) -> n (b, s, w')) -> RWST r w s m a -> RWST r w' s n b mapRWST :: (Monad n, Monoid w, Monoid w') => (m (a, s, w) -> n (b, s, w')) -> RWST r w s m a -> RWST r w' s n b mapRWST f m = RWST $ \ r s w -> do (a, s', w') <- f (runRWST m r s) let wt = w `mappend` w' wt `seq` return (a, s', wt) {-# INLINE mapRWST #-} -- | @'withRWST' f m@ executes action @m@ with an initial environment -- and state modified by applying @f@. -- -- * @'runRWST' ('withRWST' f m) r s = 'uncurry' ('runRWST' m) (f r s)@ withRWST :: (r' -> s -> (r, s)) -> RWST r w s m a -> RWST r' w s m a withRWST f m = RWST $ \ r s -> uncurry (unRWST m) (f r s) {-# INLINE withRWST #-} instance (Functor m) => Functor (RWST r w s m) where fmap f m = RWST $ \ r s w -> (\ (a, s', w') -> (f a, s', w')) <$> unRWST m r s w {-# INLINE fmap #-} instance (Functor m, Monad m) => Applicative (RWST r w s m) where pure a = RWST $ \ _ s w -> return (a, s, w) {-# INLINE pure #-} RWST mf <*> RWST mx = RWST $ \ r s w -> do (f, s', w') <- mf r s w (x, s'', w'') <- mx r s' w' return (f x, s'', w'') {-# INLINE (<*>) #-} instance (Functor m, MonadPlus m) => Alternative (RWST r w s m) where empty = RWST $ \ _ _ _ -> mzero {-# INLINE empty #-} RWST m <|> RWST n = RWST $ \ r s w -> m r s w `mplus` n r s w {-# INLINE (<|>) #-} instance (Monad m) => Monad (RWST r w s m) where #if !(MIN_VERSION_base(4,8,0)) return a = RWST $ \ _ s w -> return (a, s, w) {-# INLINE return #-} #endif m >>= k = RWST $ \ r s w -> do (a, s', w') <- unRWST m r s w unRWST (k a) r s' w' {-# INLINE (>>=) #-} #if !(MIN_VERSION_base(4,13,0)) fail msg = RWST $ \ _ _ _ -> fail msg {-# INLINE fail #-} #endif #if MIN_VERSION_base(4,9,0) instance (Fail.MonadFail m) => Fail.MonadFail (RWST r w s m) where fail msg = RWST $ \ _ _ _ -> Fail.fail msg {-# INLINE fail #-} #endif instance (Functor m, MonadPlus m) => MonadPlus (RWST r w s m) where mzero = empty {-# INLINE mzero #-} mplus = (<|>) {-# INLINE mplus #-} instance (MonadFix m) => MonadFix (RWST r w s m) where mfix f = RWST $ \ r s w -> mfix $ \ ~(a, _, _) -> unRWST (f a) r s w {-# INLINE mfix #-} instance MonadTrans (RWST r w s) where lift m = RWST $ \ _ s w -> do a <- m return (a, s, w) {-# INLINE lift #-} instance (MonadIO m) => MonadIO (RWST r w s m) where liftIO = lift . liftIO {-# INLINE liftIO #-} -- --------------------------------------------------------------------------- -- Reader operations -- | Constructor for computations in the reader monad (equivalent to 'asks'). reader :: (Monad m) => (r -> a) -> RWST r w s m a reader = asks {-# INLINE reader #-} -- | Fetch the value of the environment. ask :: (Monad m) => RWST r w s m r ask = asks id {-# INLINE ask #-} -- | Execute a computation in a modified environment -- -- * @'runRWST' ('local' f m) r s = 'runRWST' m (f r) s@ local :: (r -> r) -> RWST r w s m a -> RWST r w s m a local f m = RWST $ \ r s w -> unRWST m (f r) s w {-# INLINE local #-} -- | Retrieve a function of the current environment. -- -- * @'asks' f = 'liftM' f 'ask'@ asks :: (Monad m) => (r -> a) -> RWST r w s m a asks f = RWST $ \ r s w -> return (f r, s, w) {-# INLINE asks #-} -- --------------------------------------------------------------------------- -- Writer operations -- | Construct a writer computation from a (result, output) pair. writer :: (Monoid w, Monad m) => (a, w) -> RWST r w s m a writer (a, w') = RWST $ \ _ s w -> let wt = w `mappend` w' in wt `seq` return (a, s, wt) {-# INLINE writer #-} -- | @'tell' w@ is an action that produces the output @w@. tell :: (Monoid w, Monad m) => w -> RWST r w s m () tell w' = writer ((), w') {-# INLINE tell #-} -- | @'listen' m@ is an action that executes the action @m@ and adds its -- output to the value of the computation. -- -- * @'runRWST' ('listen' m) r s = 'liftM' (\\ (a, w) -> ((a, w), w)) ('runRWST' m r s)@ listen :: (Monoid w, Monad m) => RWST r w s m a -> RWST r w s m (a, w) listen = listens id {-# INLINE listen #-} -- | @'listens' f m@ is an action that executes the action @m@ and adds -- the result of applying @f@ to the output to the value of the computation. -- -- * @'listens' f m = 'liftM' (id *** f) ('listen' m)@ -- -- * @'runRWST' ('listens' f m) r s = 'liftM' (\\ (a, w) -> ((a, f w), w)) ('runRWST' m r s)@ listens :: (Monoid w, Monad m) => (w -> b) -> RWST r w s m a -> RWST r w s m (a, b) listens f m = RWST $ \ r s w -> do (a, s', w') <- runRWST m r s let wt = w `mappend` w' wt `seq` return ((a, f w'), s', wt) {-# INLINE listens #-} -- | @'pass' m@ is an action that executes the action @m@, which returns -- a value and a function, and returns the value, applying the function -- to the output. -- -- * @'runRWST' ('pass' m) r s = 'liftM' (\\ ((a, f), w) -> (a, f w)) ('runRWST' m r s)@ pass :: (Monoid w, Monoid w', Monad m) => RWST r w s m (a, w -> w') -> RWST r w' s m a pass m = RWST $ \ r s w -> do ((a, f), s', w') <- runRWST m r s let wt = w `mappend` f w' wt `seq` return (a, s', wt) {-# INLINE pass #-} -- | @'censor' f m@ is an action that executes the action @m@ and -- applies the function @f@ to its output, leaving the return value -- unchanged. -- -- * @'censor' f m = 'pass' ('liftM' (\\ x -> (x,f)) m)@ -- -- * @'runRWST' ('censor' f m) r s = 'liftM' (\\ (a, w) -> (a, f w)) ('runRWST' m r s)@ censor :: (Monoid w, Monad m) => (w -> w) -> RWST r w s m a -> RWST r w s m a censor f m = RWST $ \ r s w -> do (a, s', w') <- runRWST m r s let wt = w `mappend` f w' wt `seq` return (a, s', wt) {-# INLINE censor #-} -- --------------------------------------------------------------------------- -- State operations -- | Construct a state monad computation from a state transformer function. state :: (Monad m) => (s -> (a, s)) -> RWST r w s m a state f = RWST $ \ _ s w -> let (a, s') = f s in return (a, s', w) {-# INLINE state #-} -- | Fetch the current value of the state within the monad. get :: (Monad m) =>RWST r w s m s get = gets id {-# INLINE get #-} -- | @'put' s@ sets the state within the monad to @s@. put :: (Monad m) =>s -> RWST r w s m () put s = RWST $ \ _ _ w -> return ((), s, w) {-# INLINE put #-} -- | @'modify' f@ is an action that updates the state to the result of -- applying @f@ to the current state. -- -- * @'modify' f = 'get' >>= ('put' . f)@ modify :: (Monad m) =>(s -> s) -> RWST r w s m () modify f = RWST $ \ _ s w -> return ((), f s, w) {-# INLINE modify #-} -- | Get a specific component of the state, using a projection function -- supplied. -- -- * @'gets' f = 'liftM' f 'get'@ gets :: (Monad m) =>(s -> a) -> RWST r w s m a gets f = RWST $ \ _ s w -> return (f s, s, w) {-# INLINE gets #-} -- | Uniform lifting of a @callCC@ operation to the new monad. -- This version rolls back to the original state on entering the -- continuation. liftCallCC :: CallCC m (a,s,w) (b,s,w) -> CallCC (RWST r w s m) a b liftCallCC callCC f = RWST $ \ r s w -> callCC $ \ c -> unRWST (f (\ a -> RWST $ \ _ _ _ -> c (a, s, w))) r s w {-# INLINE liftCallCC #-} -- | In-situ lifting of a @callCC@ operation to the new monad. -- This version uses the current state on entering the continuation. liftCallCC' :: CallCC m (a,s,w) (b,s,w) -> CallCC (RWST r w s m) a b liftCallCC' callCC f = RWST $ \ r s w -> callCC $ \ c -> unRWST (f (\ a -> RWST $ \ _ s' _ -> c (a, s', w))) r s w {-# INLINE liftCallCC' #-} -- | Lift a @catchE@ operation to the new monad. liftCatch :: Catch e m (a,s,w) -> Catch e (RWST r w s m) a liftCatch catchE m h = RWST $ \ r s w -> unRWST m r s w `catchE` \ e -> unRWST (h e) r s w {-# INLINE liftCatch #-}