module Graphics.Triangulation.Triangulation where import Graphics.Formats.Collada.ColladaTypes import Graphics.Formats.Collada.Transformations (cycleNeighbours,cycleN) import qualified Graphics.Triangulation.GJPTriangulation as T import Data.Tuple.Select import qualified Data.Vector as V import Data.Vector (Vector, (!)) import Graphics.Formats.Collada.Vector2D3D (V2 (V), V3(V3)) import Debug.Trace import List type TriangulationFunction = Vector V2 -> [(Int,Int,Int)] data Tree = Node Int Int [Tree] instance Show Tree where show (Node c p tree) = "Node " ++ (show c) ++ " " ++ (show p) ++ "[" ++ (concat(map show tree)) ++ "]" -- | since there are a lot of triangulation algorithms -- a triangulation function can be passed triangulate :: TriangulationFunction -> Geometry -> Geometry triangulate f (Geometry name prims (Vertices vname ps ns)) = Geometry name (map triPoly prims) (Vertices vname ps ns) where triPoly (LP (LinePrimitive pIndices nIndices tex col)) = PL (LinePrimitive (tri 0 pIndices) (normals pIndices nIndices) tex col) -- TO DO: other patterns tri :: Int -> Vector (Vector Int) -> Vector (Vector Int) tri i pIndices | V.null pIndices = V.empty | otherwise = (g ( map (ind (V.head pIndices)) (f (v2s ps (V.head pIndices))))) V.++ (tri (i+(V.length (V.head pIndices))) (V.tail pIndices)) ind pIndices (i0,i1,i2) = (pIndices V.! i0, pIndices V.! i1, pIndices V.! i2) g :: [(Int,Int,Int)] -> Vector (Vector Int) g [] = V.empty g ((i0,i1,i2):xs) = V.cons (V.cons i0 $ V.cons i1 $ V.singleton i2) (g xs) normals pIndices nIndices = V.replicate (V.sum (V.map V.length pIndices)) (V.head nIndices) v2s :: Vector V3 -> Vector Int -> Vector V2 v2s ps pIndices | V.null pIndices = V.empty | otherwise = V.cons (V x z) (v2s ps (V.tail pIndices)) where (V3 x y z) = ps V.! i i = (V.head pIndices) gjpTri :: Vector V2 -> [(Int,Int,Int)] gjpTri = T.triangulation -- | some triangulation algorithms on't support polygons with holes -- These polygons with (nested) holes have to be cut so that they consist of only one outline -- I.e. the chars a,b,d,e,g,o,p,q contain holes tat have to be deleted. deleteHoles :: Geometry -> Geometry deleteHoles (Geometry name prims (Vertices vname ps ns)) = Geometry name newPrims (Vertices vname ps ns) where newPrims = zipWith3 (\pInd tex col -> LP (LinePrimitive pInd pInd tex col)) flattenedTrees (map t prims) (map c prims) flattenedTrees = zipWith (flatten vs) trees vertices trees = map (generateTrees ps insidePoly) vertices pI (LP (LinePrimitive pIndices nIndices tex col)) = pIndices t (LP (LinePrimitive pIndices nIndices tex col)) = tex c (LP (LinePrimitive pIndices nIndices tex col)) = col vertices :: [Vector (Vector Int)] vertices = map pI prims vs = V.map (\(V3 x y z) -> V x z) ps flatten :: Vector V2 -> [Tree] -> Vector (Vector Int) -> Vector (Vector Int) flatten _ [] is = V.empty flatten vs ((Node c poly tts):ts) is | null tts = V.cons (alternate c (pdir poly) (is V.! poly)) (flatten vs ts is) | otherwise = V.cons (embed vs (flatten vs tts is) (alternate c (pdir poly) (is V.! poly))) (flatten vs ts is) where pdir poly = polygonDirection $ V.map (vs V.!) (is V.! poly) -- |cut a polygon at a good position and insert the contained hole-polygon with opposite direction embed :: Vector V2 -> Vector (Vector Int) -> Vector Int -> Vector Int embed vs sub_polys poly | V.null sub_polys = poly | otherwise = embed vs (V.tail sub_polys) ((V.take (n+1) poly) V.++ (V.head sub_polys) V.++ (V.cons (V.head (V.head sub_polys)) (V.drop n poly)) ) where n = fst $ rotatePoly (vs V.! (V.head (V.head sub_polys))) (V.map (vs V.!) poly) -- |make sure that direction (clockwise or ccw) of polygons alternates depending on the nesting number c of poly alternate :: Int -> Bool -> Vector Int -> Vector Int alternate c b poly | (b && (even c)) || (not b && (odd c)) = poly | otherwise = V.reverse poly -- |f should be the funtion to test "contains" -- the trees then are the hierarchy of containedness of outlines generateTrees :: Vector V3 -> (Vector V2 -> Vector V2 -> Bool) -> Vector (Vector Int) -> [Tree] generateTrees vs f ps | V.null ps = [] | otherwise = (treesList containedPolys []) ++ (map (\x -> Node 0 x []) separateOutlines) where containedPolys = filter (\[p0,p1] -> f (pvs p0) (pvs p1)) (combi ++ (map reverse combi)) combi = combinationsOf 2 [0..((V.length ps)-1)] -- all 2-subsets i.e. [[0,1],[0,2],[1,2]] -- separate outlines don't contain other outlines separateOutlines = ([0..((V.length ps)-1)]) \\ (nub $ concat containedPolys) pvs p = V.map (\(V3 x y z) -> V x z) $ V.map (vs V.!) (ps V.! p) treesList :: [[Int]] -> [Tree] -> [Tree] treesList [] trees = trees treesList ([x,y]:cs) trees = treesList cs (insertTrees [x,y] trees) insertTrees :: [Int] -> [Tree] -> [Tree] insertTrees [x,y] trees | or (map fst ins) = map snd ins | otherwise = (map snd ins) ++ [ Node 0 y [Node 1 x []] ] where ins = map (insertTree [x,y]) trees insertTree :: [Int] -> Tree -> (Bool, Tree) insertTree [x,y] (Node c i []) | y == i = (True, Node c i [Node (c+1) x []] ) | otherwise = (False, Node c i []) insertTree [x,y] (Node c i trees) | y == i = (True, Node c i ((Node (c+1) x []):trees) ) | otherwise = (b, Node c i (map snd subtrees)) where subtrees = map (insertTree [x,y]) trees b = or (map fst subtrees) -- subsets of size k -- borrowed from David Amos' library: HaskellForMaths combinationsOf 0 _ = [[]] combinationsOf _ [] = [] combinationsOf k (x:xs) = map (x:) (combinationsOf (k-1) xs) ++ combinationsOf k xs -- |how many positions to rotate a polygon until the start point is nearest to some other point -- call i.e. with nearest (3,4) [(0,0),(1,2), ... ] 0 0 rotatePoly :: V2 -> Vector V2 -> (Int,Float) rotatePoly p poly = nearest p poly (-1) 0 0 nearest :: V2 -> Vector V2 -> Float -> Int -> Int -> (Int,Float) nearest (V x0 y0) ps dist l ml | V.null ps = (ml,dist) | (newDist < dist) || (dist < 0) = nearest (V x0 y0) (V.tail ps) newDist (l+1) l | otherwise = nearest (V x0 y0) (V.tail ps) dist (l+1) ml where newDist = (x0-x1)*(x0-x1)+(y0-y1)*(y0-y1) (V x1 y1) = V.head ps -- | returns True iff the first point of the first polygon is inside the second poylgon insidePoly :: Vector V2 -> Vector V2 -> Bool insidePoly poly1 poly2 | V.null poly1 = False | V.null poly2 = False | otherwise = pointInside (V.head poly1) poly2 -- | A point is inside a polygon if it has an odd number of intersections with the boundary (Jordan Curve theorem) pointInside :: V2 -> Vector V2 -> Bool pointInside (V x y) poly = (V.length intersectPairs) `mod` 2 == 1 where intersectPairs = V.filter (\p -> positiveXAxis p && aboveBelow p) allPairs --, specialCases p] allPairs = cycleNeighbours poly positiveXAxis p = (x0 p) > x || (x1 p) > x -- intersect with positive x-axis -- only lines with one point above + one point below can intersect aboveBelow p = (((y0 p)> y && (y1 p)< y) || ((y0 p) < y && (y1 p) > y)) specialCases p = (((dir1 p) > 0 && (dir2 p) <= 0) || ((dir1 p) <= 0 && (dir2 p) > 0))-- cross product for special cases dir1 p = cross ((x1 p)-(x0 p),(y1 p)-(y0 p)) (1,0) dir2 p = cross ((x1 p)-(x0 p),(y1 p)-(y0 p)) (x-(x0 p),y-(y0 p)) cross (a0,b0) (a1,b1) = a0*b1 - a1*b0 x0 p = (\(V x y) -> x) (V.head p) x1 p = (\(V x y) -> x) (V.last p) y0 p = (\(V x y) -> y) (V.head p) y1 p = (\(V x y) -> y) (V.last p) -- | the direction of a polygon can be obtained by looking at a maximal point -- returns True if counterclockwise -- False if clockwise polygonDirection :: Vector V2 -> Bool polygonDirection poly | dir > 0 = True | dir < 0 = False | dir ==0 = (x0 > x1) || (y0 < y1) where p = V.fromList $ nub $ V.toList poly (V x0 y0) = p V.! lminus (V x1 y1) = p V.! lplus dir = area2 (p!lminus) (p!l) (p!lplus) l = maxim poly 0 0 (-1000000,-1000000) lminus = (l-1) `mod` (V.length p) lplus = (l+1) `mod` (V.length p) -- the index of the right-/upmost point maxim :: Vector V2 -> Int -> Int -> (Float,Float) -> Int maxim xs count ml (mx,my) | V.null xs = ml | (x > mx) || (x >= mx && y > my) = maxim (V.tail xs) (count+1) count (x, y) | otherwise = maxim (V.tail xs) (count+1) ml (mx,my) where (V x y) = V.head xs isRightTurnOrOn m x p = (area2 m x p) <= 0 isLeftTurn :: V2 -> V2 -> V2 -> Bool isLeftTurn m x p = (area2 m x p) > 0 area2 (V x2 y2) (V x0 y0) (V x1 y1) = (x1-x0)*(y2-y0)-(x2-x0)*(y1-y0)