----------------------------------------------------------------------------- -- | -- Module : Text.Trifecta.Parser.Perm -- Copyright : (c) Edward Kmett 2011 -- (c) Paolo Martini 2007 -- (c) Daan Leijen 1999-2001 -- License : BSD-style -- -- Maintainer : ekmett@gmail.com -- Stability : provisional -- Portability : non-portable -- -- This module implements permutation parsers. The algorithm is described in: -- -- /Parsing Permutation Phrases,/ -- by Arthur Baars, Andres Loh and Doaitse Swierstra. -- Published as a functional pearl at the Haskell Workshop 2001. -- ----------------------------------------------------------------------------- {-# LANGUAGE ExistentialQuantification #-} module Text.Trifecta.Parser.Perm ( Perm , permute , (<||>), (<$$>) , (<|?>), (<$?>) ) where import Control.Applicative import Text.Trifecta.Parser.Combinators (choice) infixl 1 <||>, <|?> infixl 2 <$$>, <$?> {--------------------------------------------------------------- Building a permutation parser ---------------------------------------------------------------} -- | The expression @perm \<||> p@ adds parser @p@ to the permutation -- parser @perm@. The parser @p@ is not allowed to accept empty input - -- use the optional combinator ('<|?>') instead. Returns a -- new permutation parser that includes @p@. (<||>) :: Functor m => Perm m (a -> b) -> m a -> Perm m b (<||>) perm p = add perm p -- | The expression @f \<$$> p@ creates a fresh permutation parser -- consisting of parser @p@. The the final result of the permutation -- parser is the function @f@ applied to the return value of @p@. The -- parser @p@ is not allowed to accept empty input - use the optional -- combinator ('<$?>') instead. -- -- If the function @f@ takes more than one parameter, the type variable -- @b@ is instantiated to a functional type which combines nicely with -- the adds parser @p@ to the ('<||>') combinator. This -- results in stylized code where a permutation parser starts with a -- combining function @f@ followed by the parsers. The function @f@ -- gets its parameters in the order in which the parsers are specified, -- but actual input can be in any order. (<$$>) :: Functor m => (a -> b) -> m a -> Perm m b (<$$>) f p = newPerm f <||> p -- | The expression @perm \<||> (x,p)@ adds parser @p@ to the -- permutation parser @perm@. The parser @p@ is optional - if it can -- not be applied, the default value @x@ will be used instead. Returns -- a new permutation parser that includes the optional parser @p@. (<|?>) :: Functor m => Perm m (a -> b) -> (a, m a) -> Perm m b (<|?>) perm (x,p) = addOpt perm x p -- | The expression @f \<$?> (x,p)@ creates a fresh permutation parser -- consisting of parser @p@. The the final result of the permutation -- parser is the function @f@ applied to the return value of @p@. The -- parser @p@ is optional - if it can not be applied, the default value -- @x@ will be used instead. (<$?>) :: Functor m => (a -> b) -> (a, m a) -> Perm m b (<$?>) f (x,p) = newPerm f <|?> (x,p) {--------------------------------------------------------------- The permutation tree ---------------------------------------------------------------} -- | The type @Perm m a@ denotes a permutation parser that, -- when converted by the 'permute' function, parses -- using the base parsing monad @m@ and returns a value of -- type @a@ on success. -- -- Normally, a permutation parser is first build with special operators -- like ('<||>') and than transformed into a normal parser -- using 'permute'. data Perm m a = Perm (Maybe a) [Branch m a] instance Functor m => Functor (Perm m) where fmap f (Perm x xs) = Perm (fmap f x) (fmap f <$> xs) data Branch m a = forall b. Branch (Perm m (b -> a)) (m b) instance Functor m => Functor (Branch m) where fmap f (Branch perm p) = Branch (fmap (f.) perm) p -- | The parser @permute perm@ parses a permutation of parser described -- by @perm@. For example, suppose we want to parse a permutation of: -- an optional string of @a@'s, the character @b@ and an optional @c@. -- This can be described by: -- -- > test = permute (tuple <$?> ("",some (char 'a')) -- > <||> char 'b' -- > <|?> ('_',char 'c')) -- > where -- > tuple a b c = (a,b,c) -- transform a permutation tree into a normal parser permute :: Alternative m => Perm m a -> m a permute (Perm def xs) = choice (map branch xs ++ e) where e = maybe [] (pure . pure) def branch (Branch perm p) = flip id <$> p <*> permute perm -- build permutation trees newPerm :: (a -> b) -> Perm m (a -> b) newPerm f = Perm (Just f) [] add :: Functor m => Perm m (a -> b) -> m a -> Perm m b add perm@(Perm _mf fs) p = Perm Nothing (first:map insert fs) where first = Branch perm p insert (Branch perm' p') = Branch (add (fmap flip perm') p) p' addOpt :: Functor m => Perm m (a -> b) -> a -> m a -> Perm m b addOpt perm@(Perm mf fs) x p = Perm (fmap ($ x) mf) (first:map insert fs) where first = Branch perm p insert (Branch perm' p') = Branch (addOpt (fmap flip perm') x p) p'