typograffiti-0.1.0.3: Just let me draw nice text already

Safe HaskellNone
LanguageHaskell2010

Typograffiti.Utils

Synopsis

Documentation

newStablePtr :: a -> IO (StablePtr a) #

Create a stable pointer referring to the given Haskell value.

data Int #

A fixed-precision integer type with at least the range [-2^29 .. 2^29-1]. The exact range for a given implementation can be determined by using minBound and maxBound from the Bounded class.

Instances
Bounded Int

Since: base-2.1

Instance details

Defined in GHC.Enum

Methods

minBound :: Int #

maxBound :: Int #

Enum Int

Since: base-2.1

Instance details

Defined in GHC.Enum

Methods

succ :: Int -> Int #

pred :: Int -> Int #

toEnum :: Int -> Int #

fromEnum :: Int -> Int #

enumFrom :: Int -> [Int] #

enumFromThen :: Int -> Int -> [Int] #

enumFromTo :: Int -> Int -> [Int] #

enumFromThenTo :: Int -> Int -> Int -> [Int] #

Eq Int 
Instance details

Defined in GHC.Classes

Methods

(==) :: Int -> Int -> Bool #

(/=) :: Int -> Int -> Bool #

Integral Int

Since: base-2.0.1

Instance details

Defined in GHC.Real

Methods

quot :: Int -> Int -> Int #

rem :: Int -> Int -> Int #

div :: Int -> Int -> Int #

mod :: Int -> Int -> Int #

quotRem :: Int -> Int -> (Int, Int) #

divMod :: Int -> Int -> (Int, Int) #

toInteger :: Int -> Integer #

Num Int

Since: base-2.1

Instance details

Defined in GHC.Num

Methods

(+) :: Int -> Int -> Int #

(-) :: Int -> Int -> Int #

(*) :: Int -> Int -> Int #

negate :: Int -> Int #

abs :: Int -> Int #

signum :: Int -> Int #

fromInteger :: Integer -> Int #

Ord Int 
Instance details

Defined in GHC.Classes

Methods

compare :: Int -> Int -> Ordering #

(<) :: Int -> Int -> Bool #

(<=) :: Int -> Int -> Bool #

(>) :: Int -> Int -> Bool #

(>=) :: Int -> Int -> Bool #

max :: Int -> Int -> Int #

min :: Int -> Int -> Int #

Read Int

Since: base-2.1

Instance details

Defined in GHC.Read

Real Int

Since: base-2.0.1

Instance details

Defined in GHC.Real

Methods

toRational :: Int -> Rational #

Show Int

Since: base-2.1

Instance details

Defined in GHC.Show

Methods

showsPrec :: Int -> Int -> ShowS #

show :: Int -> String #

showList :: [Int] -> ShowS #

Ix Int

Since: base-2.1

Instance details

Defined in GHC.Arr

Methods

range :: (Int, Int) -> [Int] #

index :: (Int, Int) -> Int -> Int #

unsafeIndex :: (Int, Int) -> Int -> Int

inRange :: (Int, Int) -> Int -> Bool #

rangeSize :: (Int, Int) -> Int #

unsafeRangeSize :: (Int, Int) -> Int

Lift Int 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: Int -> Q Exp #

Storable Int

Since: base-2.1

Instance details

Defined in Foreign.Storable

Methods

sizeOf :: Int -> Int #

alignment :: Int -> Int #

peekElemOff :: Ptr Int -> Int -> IO Int #

pokeElemOff :: Ptr Int -> Int -> Int -> IO () #

peekByteOff :: Ptr b -> Int -> IO Int #

pokeByteOff :: Ptr b -> Int -> Int -> IO () #

peek :: Ptr Int -> IO Int #

poke :: Ptr Int -> Int -> IO () #

Bits Int

Since: base-2.1

Instance details

Defined in Data.Bits

Methods

(.&.) :: Int -> Int -> Int #

(.|.) :: Int -> Int -> Int #

xor :: Int -> Int -> Int #

complement :: Int -> Int #

shift :: Int -> Int -> Int #

rotate :: Int -> Int -> Int #

zeroBits :: Int #

bit :: Int -> Int #

setBit :: Int -> Int -> Int #

clearBit :: Int -> Int -> Int #

complementBit :: Int -> Int -> Int #

testBit :: Int -> Int -> Bool #

bitSizeMaybe :: Int -> Maybe Int #

bitSize :: Int -> Int #

isSigned :: Int -> Bool #

shiftL :: Int -> Int -> Int #

unsafeShiftL :: Int -> Int -> Int #

shiftR :: Int -> Int -> Int #

unsafeShiftR :: Int -> Int -> Int #

rotateL :: Int -> Int -> Int #

rotateR :: Int -> Int -> Int #

popCount :: Int -> Int #

FiniteBits Int

Since: base-4.6.0.0

Instance details

Defined in Data.Bits

Prim Int 
Instance details

Defined in Data.Primitive.Types

Unbox Int 
Instance details

Defined in Data.Vector.Unboxed.Base

Conjugate Int 
Instance details

Defined in Linear.Conjugate

Methods

conjugate :: Int -> Int #

TrivialConjugate Int 
Instance details

Defined in Linear.Conjugate

UniformValue Int Source # 
Instance details

Defined in Typograffiti.GL

Methods

updateUniform :: MonadIO m => GLuint -> GLint -> Int -> m () Source #

Vector Vector Int 
Instance details

Defined in Data.Vector.Unboxed.Base

MVector MVector Int 
Instance details

Defined in Data.Vector.Unboxed.Base

Generic1 (URec Int :: k -> Type) 
Instance details

Defined in GHC.Generics

Associated Types

type Rep1 (URec Int) :: k -> Type #

Methods

from1 :: URec Int a -> Rep1 (URec Int) a #

to1 :: Rep1 (URec Int) a -> URec Int a #

FunctorWithIndex Int (V n) 
Instance details

Defined in Linear.V

Methods

imap :: (Int -> a -> b) -> V n a -> V n b #

imapped :: IndexedSetter Int (V n a) (V n b) a b #

FoldableWithIndex Int (V n) 
Instance details

Defined in Linear.V

Methods

ifoldMap :: Monoid m => (Int -> a -> m) -> V n a -> m #

ifolded :: IndexedFold Int (V n a) a #

ifoldr :: (Int -> a -> b -> b) -> b -> V n a -> b #

ifoldl :: (Int -> b -> a -> b) -> b -> V n a -> b #

ifoldr' :: (Int -> a -> b -> b) -> b -> V n a -> b #

ifoldl' :: (Int -> b -> a -> b) -> b -> V n a -> b #

TraversableWithIndex Int (V n) 
Instance details

Defined in Linear.V

Methods

itraverse :: Applicative f => (Int -> a -> f b) -> V n a -> f (V n b) #

itraversed :: IndexedTraversal Int (V n a) (V n b) a b #

UniformValue (V2 Int) Source # 
Instance details

Defined in Typograffiti.GL

Methods

updateUniform :: MonadIO m => GLuint -> GLint -> V2 Int -> m () Source #

Reifies Z Int 
Instance details

Defined in Data.Reflection

Methods

reflect :: proxy Z -> Int #

Reifies n Int => Reifies (D n :: Type) Int 
Instance details

Defined in Data.Reflection

Methods

reflect :: proxy (D n) -> Int #

Reifies n Int => Reifies (SD n :: Type) Int 
Instance details

Defined in Data.Reflection

Methods

reflect :: proxy (SD n) -> Int #

Reifies n Int => Reifies (PD n :: Type) Int 
Instance details

Defined in Data.Reflection

Methods

reflect :: proxy (PD n) -> Int #

Functor (URec Int :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> URec Int a -> URec Int b #

(<$) :: a -> URec Int b -> URec Int a #

Foldable (URec Int :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => URec Int m -> m #

foldMap :: Monoid m => (a -> m) -> URec Int a -> m #

foldr :: (a -> b -> b) -> b -> URec Int a -> b #

foldr' :: (a -> b -> b) -> b -> URec Int a -> b #

foldl :: (b -> a -> b) -> b -> URec Int a -> b #

foldl' :: (b -> a -> b) -> b -> URec Int a -> b #

foldr1 :: (a -> a -> a) -> URec Int a -> a #

foldl1 :: (a -> a -> a) -> URec Int a -> a #

toList :: URec Int a -> [a] #

null :: URec Int a -> Bool #

length :: URec Int a -> Int #

elem :: Eq a => a -> URec Int a -> Bool #

maximum :: Ord a => URec Int a -> a #

minimum :: Ord a => URec Int a -> a #

sum :: Num a => URec Int a -> a #

product :: Num a => URec Int a -> a #

Traversable (URec Int :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> URec Int a -> f (URec Int b) #

sequenceA :: Applicative f => URec Int (f a) -> f (URec Int a) #

mapM :: Monad m => (a -> m b) -> URec Int a -> m (URec Int b) #

sequence :: Monad m => URec Int (m a) -> m (URec Int a) #

UniformValue (Int, Int) Source # 
Instance details

Defined in Typograffiti.GL

Methods

updateUniform :: MonadIO m => GLuint -> GLint -> (Int, Int) -> m () Source #

Eq (URec Int p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

(==) :: URec Int p -> URec Int p -> Bool #

(/=) :: URec Int p -> URec Int p -> Bool #

Ord (URec Int p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

compare :: URec Int p -> URec Int p -> Ordering #

(<) :: URec Int p -> URec Int p -> Bool #

(<=) :: URec Int p -> URec Int p -> Bool #

(>) :: URec Int p -> URec Int p -> Bool #

(>=) :: URec Int p -> URec Int p -> Bool #

max :: URec Int p -> URec Int p -> URec Int p #

min :: URec Int p -> URec Int p -> URec Int p #

Show (URec Int p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

showsPrec :: Int -> URec Int p -> ShowS #

show :: URec Int p -> String #

showList :: [URec Int p] -> ShowS #

Generic (URec Int p) 
Instance details

Defined in GHC.Generics

Associated Types

type Rep (URec Int p) :: Type -> Type #

Methods

from :: URec Int p -> Rep (URec Int p) x #

to :: Rep (URec Int p) x -> URec Int p #

type Unsigned Int 
Instance details

Defined in Data.Bytes.Signed

type Signed Int 
Instance details

Defined in Data.Bytes.Signed

type Signed Int = Int
newtype Vector Int 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype Vector Int = V_Int (Vector Int)
data URec Int (p :: k)

Used for marking occurrences of Int#

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

data URec Int (p :: k) = UInt {}
newtype MVector s Int 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s Int = MV_Int (MVector s Int)
type Rep1 (URec Int :: k -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

type Rep1 (URec Int :: k -> Type) = D1 (MetaData "URec" "GHC.Generics" "base" False) (C1 (MetaCons "UInt" PrefixI True) (S1 (MetaSel (Just "uInt#") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (UInt :: k -> Type)))
type Rep (URec Int p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

type Rep (URec Int p) = D1 (MetaData "URec" "GHC.Generics" "base" False) (C1 (MetaCons "UInt" PrefixI True) (S1 (MetaSel (Just "uInt#") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (UInt :: Type -> Type)))

data Int8 #

8-bit signed integer type

Instances
Bounded Int8

Since: base-2.1

Instance details

Defined in GHC.Int

Enum Int8

Since: base-2.1

Instance details

Defined in GHC.Int

Methods

succ :: Int8 -> Int8 #

pred :: Int8 -> Int8 #

toEnum :: Int -> Int8 #

fromEnum :: Int8 -> Int #

enumFrom :: Int8 -> [Int8] #

enumFromThen :: Int8 -> Int8 -> [Int8] #

enumFromTo :: Int8 -> Int8 -> [Int8] #

enumFromThenTo :: Int8 -> Int8 -> Int8 -> [Int8] #

Eq Int8

Since: base-2.1

Instance details

Defined in GHC.Int

Methods

(==) :: Int8 -> Int8 -> Bool #

(/=) :: Int8 -> Int8 -> Bool #

Integral Int8

Since: base-2.1

Instance details

Defined in GHC.Int

Methods

quot :: Int8 -> Int8 -> Int8 #

rem :: Int8 -> Int8 -> Int8 #

div :: Int8 -> Int8 -> Int8 #

mod :: Int8 -> Int8 -> Int8 #

quotRem :: Int8 -> Int8 -> (Int8, Int8) #

divMod :: Int8 -> Int8 -> (Int8, Int8) #

toInteger :: Int8 -> Integer #

Num Int8

Since: base-2.1

Instance details

Defined in GHC.Int

Methods

(+) :: Int8 -> Int8 -> Int8 #

(-) :: Int8 -> Int8 -> Int8 #

(*) :: Int8 -> Int8 -> Int8 #

negate :: Int8 -> Int8 #

abs :: Int8 -> Int8 #

signum :: Int8 -> Int8 #

fromInteger :: Integer -> Int8 #

Ord Int8

Since: base-2.1

Instance details

Defined in GHC.Int

Methods

compare :: Int8 -> Int8 -> Ordering #

(<) :: Int8 -> Int8 -> Bool #

(<=) :: Int8 -> Int8 -> Bool #

(>) :: Int8 -> Int8 -> Bool #

(>=) :: Int8 -> Int8 -> Bool #

max :: Int8 -> Int8 -> Int8 #

min :: Int8 -> Int8 -> Int8 #

Read Int8

Since: base-2.1

Instance details

Defined in GHC.Int

Real Int8

Since: base-2.1

Instance details

Defined in GHC.Int

Methods

toRational :: Int8 -> Rational #

Show Int8

Since: base-2.1

Instance details

Defined in GHC.Int

Methods

showsPrec :: Int -> Int8 -> ShowS #

show :: Int8 -> String #

showList :: [Int8] -> ShowS #

Ix Int8

Since: base-2.1

Instance details

Defined in GHC.Int

Methods

range :: (Int8, Int8) -> [Int8] #

index :: (Int8, Int8) -> Int8 -> Int #

unsafeIndex :: (Int8, Int8) -> Int8 -> Int

inRange :: (Int8, Int8) -> Int8 -> Bool #

rangeSize :: (Int8, Int8) -> Int #

unsafeRangeSize :: (Int8, Int8) -> Int

Lift Int8 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: Int8 -> Q Exp #

Storable Int8

Since: base-2.1

Instance details

Defined in Foreign.Storable

Methods

sizeOf :: Int8 -> Int #

alignment :: Int8 -> Int #

peekElemOff :: Ptr Int8 -> Int -> IO Int8 #

pokeElemOff :: Ptr Int8 -> Int -> Int8 -> IO () #

peekByteOff :: Ptr b -> Int -> IO Int8 #

pokeByteOff :: Ptr b -> Int -> Int8 -> IO () #

peek :: Ptr Int8 -> IO Int8 #

poke :: Ptr Int8 -> Int8 -> IO () #

Bits Int8

Since: base-2.1

Instance details

Defined in GHC.Int

FiniteBits Int8

Since: base-4.6.0.0

Instance details

Defined in GHC.Int

Prim Int8 
Instance details

Defined in Data.Primitive.Types

Unbox Int8 
Instance details

Defined in Data.Vector.Unboxed.Base

Conjugate Int8 
Instance details

Defined in Linear.Conjugate

Methods

conjugate :: Int8 -> Int8 #

TrivialConjugate Int8 
Instance details

Defined in Linear.Conjugate

Vector Vector Int8 
Instance details

Defined in Data.Vector.Unboxed.Base

MVector MVector Int8 
Instance details

Defined in Data.Vector.Unboxed.Base

type Unsigned Int8 
Instance details

Defined in Data.Bytes.Signed

type Signed Int8 
Instance details

Defined in Data.Bytes.Signed

newtype Vector Int8 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s Int8 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s Int8 = MV_Int8 (MVector s Int8)

data Int16 #

16-bit signed integer type

Instances
Bounded Int16

Since: base-2.1

Instance details

Defined in GHC.Int

Enum Int16

Since: base-2.1

Instance details

Defined in GHC.Int

Eq Int16

Since: base-2.1

Instance details

Defined in GHC.Int

Methods

(==) :: Int16 -> Int16 -> Bool #

(/=) :: Int16 -> Int16 -> Bool #

Integral Int16

Since: base-2.1

Instance details

Defined in GHC.Int

Num Int16

Since: base-2.1

Instance details

Defined in GHC.Int

Ord Int16

Since: base-2.1

Instance details

Defined in GHC.Int

Methods

compare :: Int16 -> Int16 -> Ordering #

(<) :: Int16 -> Int16 -> Bool #

(<=) :: Int16 -> Int16 -> Bool #

(>) :: Int16 -> Int16 -> Bool #

(>=) :: Int16 -> Int16 -> Bool #

max :: Int16 -> Int16 -> Int16 #

min :: Int16 -> Int16 -> Int16 #

Read Int16

Since: base-2.1

Instance details

Defined in GHC.Int

Real Int16

Since: base-2.1

Instance details

Defined in GHC.Int

Methods

toRational :: Int16 -> Rational #

Show Int16

Since: base-2.1

Instance details

Defined in GHC.Int

Methods

showsPrec :: Int -> Int16 -> ShowS #

show :: Int16 -> String #

showList :: [Int16] -> ShowS #

Ix Int16

Since: base-2.1

Instance details

Defined in GHC.Int

Lift Int16 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: Int16 -> Q Exp #

Storable Int16

Since: base-2.1

Instance details

Defined in Foreign.Storable

Methods

sizeOf :: Int16 -> Int #

alignment :: Int16 -> Int #

peekElemOff :: Ptr Int16 -> Int -> IO Int16 #

pokeElemOff :: Ptr Int16 -> Int -> Int16 -> IO () #

peekByteOff :: Ptr b -> Int -> IO Int16 #

pokeByteOff :: Ptr b -> Int -> Int16 -> IO () #

peek :: Ptr Int16 -> IO Int16 #

poke :: Ptr Int16 -> Int16 -> IO () #

Bits Int16

Since: base-2.1

Instance details

Defined in GHC.Int

FiniteBits Int16

Since: base-4.6.0.0

Instance details

Defined in GHC.Int

Prim Int16 
Instance details

Defined in Data.Primitive.Types

Unbox Int16 
Instance details

Defined in Data.Vector.Unboxed.Base

Conjugate Int16 
Instance details

Defined in Linear.Conjugate

Methods

conjugate :: Int16 -> Int16 #

TrivialConjugate Int16 
Instance details

Defined in Linear.Conjugate

Vector Vector Int16 
Instance details

Defined in Data.Vector.Unboxed.Base

MVector MVector Int16 
Instance details

Defined in Data.Vector.Unboxed.Base

type Unsigned Int16 
Instance details

Defined in Data.Bytes.Signed

type Signed Int16 
Instance details

Defined in Data.Bytes.Signed

newtype Vector Int16 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s Int16 
Instance details

Defined in Data.Vector.Unboxed.Base

data Int32 #

32-bit signed integer type

Instances
Bounded Int32

Since: base-2.1

Instance details

Defined in GHC.Int

Enum Int32

Since: base-2.1

Instance details

Defined in GHC.Int

Eq Int32

Since: base-2.1

Instance details

Defined in GHC.Int

Methods

(==) :: Int32 -> Int32 -> Bool #

(/=) :: Int32 -> Int32 -> Bool #

Integral Int32

Since: base-2.1

Instance details

Defined in GHC.Int

Num Int32

Since: base-2.1

Instance details

Defined in GHC.Int

Ord Int32

Since: base-2.1

Instance details

Defined in GHC.Int

Methods

compare :: Int32 -> Int32 -> Ordering #

(<) :: Int32 -> Int32 -> Bool #

(<=) :: Int32 -> Int32 -> Bool #

(>) :: Int32 -> Int32 -> Bool #

(>=) :: Int32 -> Int32 -> Bool #

max :: Int32 -> Int32 -> Int32 #

min :: Int32 -> Int32 -> Int32 #

Read Int32

Since: base-2.1

Instance details

Defined in GHC.Int

Real Int32

Since: base-2.1

Instance details

Defined in GHC.Int

Methods

toRational :: Int32 -> Rational #

Show Int32

Since: base-2.1

Instance details

Defined in GHC.Int

Methods

showsPrec :: Int -> Int32 -> ShowS #

show :: Int32 -> String #

showList :: [Int32] -> ShowS #

Ix Int32

Since: base-2.1

Instance details

Defined in GHC.Int

Lift Int32 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: Int32 -> Q Exp #

Storable Int32

Since: base-2.1

Instance details

Defined in Foreign.Storable

Methods

sizeOf :: Int32 -> Int #

alignment :: Int32 -> Int #

peekElemOff :: Ptr Int32 -> Int -> IO Int32 #

pokeElemOff :: Ptr Int32 -> Int -> Int32 -> IO () #

peekByteOff :: Ptr b -> Int -> IO Int32 #

pokeByteOff :: Ptr b -> Int -> Int32 -> IO () #

peek :: Ptr Int32 -> IO Int32 #

poke :: Ptr Int32 -> Int32 -> IO () #

Bits Int32

Since: base-2.1

Instance details

Defined in GHC.Int

FiniteBits Int32

Since: base-4.6.0.0

Instance details

Defined in GHC.Int

Prim Int32 
Instance details

Defined in Data.Primitive.Types

Unbox Int32 
Instance details

Defined in Data.Vector.Unboxed.Base

Conjugate Int32 
Instance details

Defined in Linear.Conjugate

Methods

conjugate :: Int32 -> Int32 #

TrivialConjugate Int32 
Instance details

Defined in Linear.Conjugate

Vector Vector Int32 
Instance details

Defined in Data.Vector.Unboxed.Base

MVector MVector Int32 
Instance details

Defined in Data.Vector.Unboxed.Base

type Unsigned Int32 
Instance details

Defined in Data.Bytes.Signed

type Signed Int32 
Instance details

Defined in Data.Bytes.Signed

newtype Vector Int32 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s Int32 
Instance details

Defined in Data.Vector.Unboxed.Base

data Int64 #

64-bit signed integer type

Instances
Bounded Int64

Since: base-2.1

Instance details

Defined in GHC.Int

Enum Int64

Since: base-2.1

Instance details

Defined in GHC.Int

Eq Int64

Since: base-2.1

Instance details

Defined in GHC.Int

Methods

(==) :: Int64 -> Int64 -> Bool #

(/=) :: Int64 -> Int64 -> Bool #

Integral Int64

Since: base-2.1

Instance details

Defined in GHC.Int

Num Int64

Since: base-2.1

Instance details

Defined in GHC.Int

Ord Int64

Since: base-2.1

Instance details

Defined in GHC.Int

Methods

compare :: Int64 -> Int64 -> Ordering #

(<) :: Int64 -> Int64 -> Bool #

(<=) :: Int64 -> Int64 -> Bool #

(>) :: Int64 -> Int64 -> Bool #

(>=) :: Int64 -> Int64 -> Bool #

max :: Int64 -> Int64 -> Int64 #

min :: Int64 -> Int64 -> Int64 #

Read Int64

Since: base-2.1

Instance details

Defined in GHC.Int

Real Int64

Since: base-2.1

Instance details

Defined in GHC.Int

Methods

toRational :: Int64 -> Rational #

Show Int64

Since: base-2.1

Instance details

Defined in GHC.Int

Methods

showsPrec :: Int -> Int64 -> ShowS #

show :: Int64 -> String #

showList :: [Int64] -> ShowS #

Ix Int64

Since: base-2.1

Instance details

Defined in GHC.Int

Lift Int64 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: Int64 -> Q Exp #

Storable Int64

Since: base-2.1

Instance details

Defined in Foreign.Storable

Methods

sizeOf :: Int64 -> Int #

alignment :: Int64 -> Int #

peekElemOff :: Ptr Int64 -> Int -> IO Int64 #

pokeElemOff :: Ptr Int64 -> Int -> Int64 -> IO () #

peekByteOff :: Ptr b -> Int -> IO Int64 #

pokeByteOff :: Ptr b -> Int -> Int64 -> IO () #

peek :: Ptr Int64 -> IO Int64 #

poke :: Ptr Int64 -> Int64 -> IO () #

Bits Int64

Since: base-2.1

Instance details

Defined in GHC.Int

FiniteBits Int64

Since: base-4.6.0.0

Instance details

Defined in GHC.Int

Prim Int64 
Instance details

Defined in Data.Primitive.Types

Unbox Int64 
Instance details

Defined in Data.Vector.Unboxed.Base

Conjugate Int64 
Instance details

Defined in Linear.Conjugate

Methods

conjugate :: Int64 -> Int64 #

TrivialConjugate Int64 
Instance details

Defined in Linear.Conjugate

Vector Vector Int64 
Instance details

Defined in Data.Vector.Unboxed.Base

MVector MVector Int64 
Instance details

Defined in Data.Vector.Unboxed.Base

type Unsigned Int64 
Instance details

Defined in Data.Bytes.Signed

type Signed Int64 
Instance details

Defined in Data.Bytes.Signed

newtype Vector Int64 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s Int64 
Instance details

Defined in Data.Vector.Unboxed.Base

data StablePtr a #

A stable pointer is a reference to a Haskell expression that is guaranteed not to be affected by garbage collection, i.e., it will neither be deallocated nor will the value of the stable pointer itself change during garbage collection (ordinary references may be relocated during garbage collection). Consequently, stable pointers can be passed to foreign code, which can treat it as an opaque reference to a Haskell value.

A value of type StablePtr a is a stable pointer to a Haskell expression of type a.

Instances
Eq (StablePtr a)

Since: base-2.1

Instance details

Defined in GHC.Stable

Methods

(==) :: StablePtr a -> StablePtr a -> Bool #

(/=) :: StablePtr a -> StablePtr a -> Bool #

Storable (StablePtr a)

Since: base-2.1

Instance details

Defined in Foreign.Storable

Methods

sizeOf :: StablePtr a -> Int #

alignment :: StablePtr a -> Int #

peekElemOff :: Ptr (StablePtr a) -> Int -> IO (StablePtr a) #

pokeElemOff :: Ptr (StablePtr a) -> Int -> StablePtr a -> IO () #

peekByteOff :: Ptr b -> Int -> IO (StablePtr a) #

pokeByteOff :: Ptr b -> Int -> StablePtr a -> IO () #

peek :: Ptr (StablePtr a) -> IO (StablePtr a) #

poke :: Ptr (StablePtr a) -> StablePtr a -> IO () #

PrimUnlifted (StablePtr a)

Since: primitive-0.6.4.0

Instance details

Defined in Data.Primitive.UnliftedArray

data Word #

A Word is an unsigned integral type, with the same size as Int.

Instances
Bounded Word

Since: base-2.1

Instance details

Defined in GHC.Enum

Enum Word

Since: base-2.1

Instance details

Defined in GHC.Enum

Methods

succ :: Word -> Word #

pred :: Word -> Word #

toEnum :: Int -> Word #

fromEnum :: Word -> Int #

enumFrom :: Word -> [Word] #

enumFromThen :: Word -> Word -> [Word] #

enumFromTo :: Word -> Word -> [Word] #

enumFromThenTo :: Word -> Word -> Word -> [Word] #

Eq Word 
Instance details

Defined in GHC.Classes

Methods

(==) :: Word -> Word -> Bool #

(/=) :: Word -> Word -> Bool #

Integral Word

Since: base-2.1

Instance details

Defined in GHC.Real

Methods

quot :: Word -> Word -> Word #

rem :: Word -> Word -> Word #

div :: Word -> Word -> Word #

mod :: Word -> Word -> Word #

quotRem :: Word -> Word -> (Word, Word) #

divMod :: Word -> Word -> (Word, Word) #

toInteger :: Word -> Integer #

Num Word

Since: base-2.1

Instance details

Defined in GHC.Num

Methods

(+) :: Word -> Word -> Word #

(-) :: Word -> Word -> Word #

(*) :: Word -> Word -> Word #

negate :: Word -> Word #

abs :: Word -> Word #

signum :: Word -> Word #

fromInteger :: Integer -> Word #

Ord Word 
Instance details

Defined in GHC.Classes

Methods

compare :: Word -> Word -> Ordering #

(<) :: Word -> Word -> Bool #

(<=) :: Word -> Word -> Bool #

(>) :: Word -> Word -> Bool #

(>=) :: Word -> Word -> Bool #

max :: Word -> Word -> Word #

min :: Word -> Word -> Word #

Read Word

Since: base-4.5.0.0

Instance details

Defined in GHC.Read

Real Word

Since: base-2.1

Instance details

Defined in GHC.Real

Methods

toRational :: Word -> Rational #

Show Word

Since: base-2.1

Instance details

Defined in GHC.Show

Methods

showsPrec :: Int -> Word -> ShowS #

show :: Word -> String #

showList :: [Word] -> ShowS #

Ix Word

Since: base-4.6.0.0

Instance details

Defined in GHC.Arr

Methods

range :: (Word, Word) -> [Word] #

index :: (Word, Word) -> Word -> Int #

unsafeIndex :: (Word, Word) -> Word -> Int

inRange :: (Word, Word) -> Word -> Bool #

rangeSize :: (Word, Word) -> Int #

unsafeRangeSize :: (Word, Word) -> Int

Lift Word 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: Word -> Q Exp #

Storable Word

Since: base-2.1

Instance details

Defined in Foreign.Storable

Methods

sizeOf :: Word -> Int #

alignment :: Word -> Int #

peekElemOff :: Ptr Word -> Int -> IO Word #

pokeElemOff :: Ptr Word -> Int -> Word -> IO () #

peekByteOff :: Ptr b -> Int -> IO Word #

pokeByteOff :: Ptr b -> Int -> Word -> IO () #

peek :: Ptr Word -> IO Word #

poke :: Ptr Word -> Word -> IO () #

Bits Word

Since: base-2.1

Instance details

Defined in Data.Bits

FiniteBits Word

Since: base-4.6.0.0

Instance details

Defined in Data.Bits

Prim Word 
Instance details

Defined in Data.Primitive.Types

Unbox Word 
Instance details

Defined in Data.Vector.Unboxed.Base

Conjugate Word 
Instance details

Defined in Linear.Conjugate

Methods

conjugate :: Word -> Word #

TrivialConjugate Word 
Instance details

Defined in Linear.Conjugate

Vector Vector Word 
Instance details

Defined in Data.Vector.Unboxed.Base

MVector MVector Word 
Instance details

Defined in Data.Vector.Unboxed.Base

Generic1 (URec Word :: k -> Type) 
Instance details

Defined in GHC.Generics

Associated Types

type Rep1 (URec Word) :: k -> Type #

Methods

from1 :: URec Word a -> Rep1 (URec Word) a #

to1 :: Rep1 (URec Word) a -> URec Word a #

Functor (URec Word :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> URec Word a -> URec Word b #

(<$) :: a -> URec Word b -> URec Word a #

Foldable (URec Word :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => URec Word m -> m #

foldMap :: Monoid m => (a -> m) -> URec Word a -> m #

foldr :: (a -> b -> b) -> b -> URec Word a -> b #

foldr' :: (a -> b -> b) -> b -> URec Word a -> b #

foldl :: (b -> a -> b) -> b -> URec Word a -> b #

foldl' :: (b -> a -> b) -> b -> URec Word a -> b #

foldr1 :: (a -> a -> a) -> URec Word a -> a #

foldl1 :: (a -> a -> a) -> URec Word a -> a #

toList :: URec Word a -> [a] #

null :: URec Word a -> Bool #

length :: URec Word a -> Int #

elem :: Eq a => a -> URec Word a -> Bool #

maximum :: Ord a => URec Word a -> a #

minimum :: Ord a => URec Word a -> a #

sum :: Num a => URec Word a -> a #

product :: Num a => URec Word a -> a #

Traversable (URec Word :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> URec Word a -> f (URec Word b) #

sequenceA :: Applicative f => URec Word (f a) -> f (URec Word a) #

mapM :: Monad m => (a -> m b) -> URec Word a -> m (URec Word b) #

sequence :: Monad m => URec Word (m a) -> m (URec Word a) #

Eq (URec Word p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

(==) :: URec Word p -> URec Word p -> Bool #

(/=) :: URec Word p -> URec Word p -> Bool #

Ord (URec Word p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

compare :: URec Word p -> URec Word p -> Ordering #

(<) :: URec Word p -> URec Word p -> Bool #

(<=) :: URec Word p -> URec Word p -> Bool #

(>) :: URec Word p -> URec Word p -> Bool #

(>=) :: URec Word p -> URec Word p -> Bool #

max :: URec Word p -> URec Word p -> URec Word p #

min :: URec Word p -> URec Word p -> URec Word p #

Show (URec Word p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

showsPrec :: Int -> URec Word p -> ShowS #

show :: URec Word p -> String #

showList :: [URec Word p] -> ShowS #

Generic (URec Word p) 
Instance details

Defined in GHC.Generics

Associated Types

type Rep (URec Word p) :: Type -> Type #

Methods

from :: URec Word p -> Rep (URec Word p) x #

to :: Rep (URec Word p) x -> URec Word p #

type Unsigned Word 
Instance details

Defined in Data.Bytes.Signed

type Signed Word 
Instance details

Defined in Data.Bytes.Signed

type Signed Word = Int
newtype Vector Word 
Instance details

Defined in Data.Vector.Unboxed.Base

data URec Word (p :: k)

Used for marking occurrences of Word#

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

data URec Word (p :: k) = UWord {}
newtype MVector s Word 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s Word = MV_Word (MVector s Word)
type Rep1 (URec Word :: k -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

type Rep1 (URec Word :: k -> Type) = D1 (MetaData "URec" "GHC.Generics" "base" False) (C1 (MetaCons "UWord" PrefixI True) (S1 (MetaSel (Just "uWord#") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (UWord :: k -> Type)))
type Rep (URec Word p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

type Rep (URec Word p) = D1 (MetaData "URec" "GHC.Generics" "base" False) (C1 (MetaCons "UWord" PrefixI True) (S1 (MetaSel (Just "uWord#") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (UWord :: Type -> Type)))

data Word8 #

8-bit unsigned integer type

Instances
Bounded Word8

Since: base-2.1

Instance details

Defined in GHC.Word

Enum Word8

Since: base-2.1

Instance details

Defined in GHC.Word

Eq Word8

Since: base-2.1

Instance details

Defined in GHC.Word

Methods

(==) :: Word8 -> Word8 -> Bool #

(/=) :: Word8 -> Word8 -> Bool #

Integral Word8

Since: base-2.1

Instance details

Defined in GHC.Word

Num Word8

Since: base-2.1

Instance details

Defined in GHC.Word

Ord Word8

Since: base-2.1

Instance details

Defined in GHC.Word

Methods

compare :: Word8 -> Word8 -> Ordering #

(<) :: Word8 -> Word8 -> Bool #

(<=) :: Word8 -> Word8 -> Bool #

(>) :: Word8 -> Word8 -> Bool #

(>=) :: Word8 -> Word8 -> Bool #

max :: Word8 -> Word8 -> Word8 #

min :: Word8 -> Word8 -> Word8 #

Read Word8

Since: base-2.1

Instance details

Defined in GHC.Read

Real Word8

Since: base-2.1

Instance details

Defined in GHC.Word

Methods

toRational :: Word8 -> Rational #

Show Word8

Since: base-2.1

Instance details

Defined in GHC.Word

Methods

showsPrec :: Int -> Word8 -> ShowS #

show :: Word8 -> String #

showList :: [Word8] -> ShowS #

Ix Word8

Since: base-2.1

Instance details

Defined in GHC.Word

Lift Word8 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: Word8 -> Q Exp #

Storable Word8

Since: base-2.1

Instance details

Defined in Foreign.Storable

Methods

sizeOf :: Word8 -> Int #

alignment :: Word8 -> Int #

peekElemOff :: Ptr Word8 -> Int -> IO Word8 #

pokeElemOff :: Ptr Word8 -> Int -> Word8 -> IO () #

peekByteOff :: Ptr b -> Int -> IO Word8 #

pokeByteOff :: Ptr b -> Int -> Word8 -> IO () #

peek :: Ptr Word8 -> IO Word8 #

poke :: Ptr Word8 -> Word8 -> IO () #

Bits Word8

Since: base-2.1

Instance details

Defined in GHC.Word

FiniteBits Word8

Since: base-4.6.0.0

Instance details

Defined in GHC.Word

Prim Word8 
Instance details

Defined in Data.Primitive.Types

Unbox Word8 
Instance details

Defined in Data.Vector.Unboxed.Base

Conjugate Word8 
Instance details

Defined in Linear.Conjugate

Methods

conjugate :: Word8 -> Word8 #

TrivialConjugate Word8 
Instance details

Defined in Linear.Conjugate

Vector Vector Word8 
Instance details

Defined in Data.Vector.Unboxed.Base

MVector MVector Word8 
Instance details

Defined in Data.Vector.Unboxed.Base

type Unsigned Word8 
Instance details

Defined in Data.Bytes.Signed

type Signed Word8 
Instance details

Defined in Data.Bytes.Signed

newtype Vector Word8 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s Word8 
Instance details

Defined in Data.Vector.Unboxed.Base

data Word16 #

16-bit unsigned integer type

Instances
Bounded Word16

Since: base-2.1

Instance details

Defined in GHC.Word

Enum Word16

Since: base-2.1

Instance details

Defined in GHC.Word

Eq Word16

Since: base-2.1

Instance details

Defined in GHC.Word

Methods

(==) :: Word16 -> Word16 -> Bool #

(/=) :: Word16 -> Word16 -> Bool #

Integral Word16

Since: base-2.1

Instance details

Defined in GHC.Word

Num Word16

Since: base-2.1

Instance details

Defined in GHC.Word

Ord Word16

Since: base-2.1

Instance details

Defined in GHC.Word

Read Word16

Since: base-2.1

Instance details

Defined in GHC.Read

Real Word16

Since: base-2.1

Instance details

Defined in GHC.Word

Show Word16

Since: base-2.1

Instance details

Defined in GHC.Word

Ix Word16

Since: base-2.1

Instance details

Defined in GHC.Word

Lift Word16 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: Word16 -> Q Exp #

Storable Word16

Since: base-2.1

Instance details

Defined in Foreign.Storable

Bits Word16

Since: base-2.1

Instance details

Defined in GHC.Word

FiniteBits Word16

Since: base-4.6.0.0

Instance details

Defined in GHC.Word

Prim Word16 
Instance details

Defined in Data.Primitive.Types

Unbox Word16 
Instance details

Defined in Data.Vector.Unboxed.Base

Conjugate Word16 
Instance details

Defined in Linear.Conjugate

Methods

conjugate :: Word16 -> Word16 #

TrivialConjugate Word16 
Instance details

Defined in Linear.Conjugate

Vector Vector Word16 
Instance details

Defined in Data.Vector.Unboxed.Base

MVector MVector Word16 
Instance details

Defined in Data.Vector.Unboxed.Base

type Unsigned Word16 
Instance details

Defined in Data.Bytes.Signed

type Signed Word16 
Instance details

Defined in Data.Bytes.Signed

newtype Vector Word16 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s Word16 
Instance details

Defined in Data.Vector.Unboxed.Base

data Word32 #

32-bit unsigned integer type

Instances
Bounded Word32

Since: base-2.1

Instance details

Defined in GHC.Word

Enum Word32

Since: base-2.1

Instance details

Defined in GHC.Word

Eq Word32

Since: base-2.1

Instance details

Defined in GHC.Word

Methods

(==) :: Word32 -> Word32 -> Bool #

(/=) :: Word32 -> Word32 -> Bool #

Integral Word32

Since: base-2.1

Instance details

Defined in GHC.Word

Num Word32

Since: base-2.1

Instance details

Defined in GHC.Word

Ord Word32

Since: base-2.1

Instance details

Defined in GHC.Word

Read Word32

Since: base-2.1

Instance details

Defined in GHC.Read

Real Word32

Since: base-2.1

Instance details

Defined in GHC.Word

Show Word32

Since: base-2.1

Instance details

Defined in GHC.Word

Ix Word32

Since: base-2.1

Instance details

Defined in GHC.Word

Lift Word32 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: Word32 -> Q Exp #

Storable Word32

Since: base-2.1

Instance details

Defined in Foreign.Storable

Bits Word32

Since: base-2.1

Instance details

Defined in GHC.Word

FiniteBits Word32

Since: base-4.6.0.0

Instance details

Defined in GHC.Word

Prim Word32 
Instance details

Defined in Data.Primitive.Types

Unbox Word32 
Instance details

Defined in Data.Vector.Unboxed.Base

Conjugate Word32 
Instance details

Defined in Linear.Conjugate

Methods

conjugate :: Word32 -> Word32 #

TrivialConjugate Word32 
Instance details

Defined in Linear.Conjugate

Vector Vector Word32 
Instance details

Defined in Data.Vector.Unboxed.Base

MVector MVector Word32 
Instance details

Defined in Data.Vector.Unboxed.Base

type Unsigned Word32 
Instance details

Defined in Data.Bytes.Signed

type Signed Word32 
Instance details

Defined in Data.Bytes.Signed

newtype Vector Word32 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s Word32 
Instance details

Defined in Data.Vector.Unboxed.Base

data Word64 #

64-bit unsigned integer type

Instances
Bounded Word64

Since: base-2.1

Instance details

Defined in GHC.Word

Enum Word64

Since: base-2.1

Instance details

Defined in GHC.Word

Eq Word64

Since: base-2.1

Instance details

Defined in GHC.Word

Methods

(==) :: Word64 -> Word64 -> Bool #

(/=) :: Word64 -> Word64 -> Bool #

Integral Word64

Since: base-2.1

Instance details

Defined in GHC.Word

Num Word64

Since: base-2.1

Instance details

Defined in GHC.Word

Ord Word64

Since: base-2.1

Instance details

Defined in GHC.Word

Read Word64

Since: base-2.1

Instance details

Defined in GHC.Read

Real Word64

Since: base-2.1

Instance details

Defined in GHC.Word

Show Word64

Since: base-2.1

Instance details

Defined in GHC.Word

Ix Word64

Since: base-2.1

Instance details

Defined in GHC.Word

Lift Word64 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: Word64 -> Q Exp #

Storable Word64

Since: base-2.1

Instance details

Defined in Foreign.Storable

Bits Word64

Since: base-2.1

Instance details

Defined in GHC.Word

FiniteBits Word64

Since: base-4.6.0.0

Instance details

Defined in GHC.Word

Prim Word64 
Instance details

Defined in Data.Primitive.Types

Unbox Word64 
Instance details

Defined in Data.Vector.Unboxed.Base

Conjugate Word64 
Instance details

Defined in Linear.Conjugate

Methods

conjugate :: Word64 -> Word64 #

TrivialConjugate Word64 
Instance details

Defined in Linear.Conjugate

Vector Vector Word64 
Instance details

Defined in Data.Vector.Unboxed.Base

MVector MVector Word64 
Instance details

Defined in Data.Vector.Unboxed.Base

type Unsigned Word64 
Instance details

Defined in Data.Bytes.Signed

type Signed Word64 
Instance details

Defined in Data.Bytes.Signed

newtype Vector Word64 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s Word64 
Instance details

Defined in Data.Vector.Unboxed.Base

data Ptr a #

A value of type Ptr a represents a pointer to an object, or an array of objects, which may be marshalled to or from Haskell values of type a.

The type a will often be an instance of class Storable which provides the marshalling operations. However this is not essential, and you can provide your own operations to access the pointer. For example you might write small foreign functions to get or set the fields of a C struct.

Instances
Generic1 (URec (Ptr ()) :: k -> Type) 
Instance details

Defined in GHC.Generics

Associated Types

type Rep1 (URec (Ptr ())) :: k -> Type #

Methods

from1 :: URec (Ptr ()) a -> Rep1 (URec (Ptr ())) a #

to1 :: Rep1 (URec (Ptr ())) a -> URec (Ptr ()) a #

Eq (Ptr a)

Since: base-2.1

Instance details

Defined in GHC.Ptr

Methods

(==) :: Ptr a -> Ptr a -> Bool #

(/=) :: Ptr a -> Ptr a -> Bool #

Ord (Ptr a)

Since: base-2.1

Instance details

Defined in GHC.Ptr

Methods

compare :: Ptr a -> Ptr a -> Ordering #

(<) :: Ptr a -> Ptr a -> Bool #

(<=) :: Ptr a -> Ptr a -> Bool #

(>) :: Ptr a -> Ptr a -> Bool #

(>=) :: Ptr a -> Ptr a -> Bool #

max :: Ptr a -> Ptr a -> Ptr a #

min :: Ptr a -> Ptr a -> Ptr a #

Show (Ptr a)

Since: base-2.1

Instance details

Defined in GHC.Ptr

Methods

showsPrec :: Int -> Ptr a -> ShowS #

show :: Ptr a -> String #

showList :: [Ptr a] -> ShowS #

Storable (Ptr a)

Since: base-2.1

Instance details

Defined in Foreign.Storable

Methods

sizeOf :: Ptr a -> Int #

alignment :: Ptr a -> Int #

peekElemOff :: Ptr (Ptr a) -> Int -> IO (Ptr a) #

pokeElemOff :: Ptr (Ptr a) -> Int -> Ptr a -> IO () #

peekByteOff :: Ptr b -> Int -> IO (Ptr a) #

pokeByteOff :: Ptr b -> Int -> Ptr a -> IO () #

peek :: Ptr (Ptr a) -> IO (Ptr a) #

poke :: Ptr (Ptr a) -> Ptr a -> IO () #

Prim (Ptr a) 
Instance details

Defined in Data.Primitive.Types

Functor (URec (Ptr ()) :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> URec (Ptr ()) a -> URec (Ptr ()) b #

(<$) :: a -> URec (Ptr ()) b -> URec (Ptr ()) a #

Foldable (URec (Ptr ()) :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => URec (Ptr ()) m -> m #

foldMap :: Monoid m => (a -> m) -> URec (Ptr ()) a -> m #

foldr :: (a -> b -> b) -> b -> URec (Ptr ()) a -> b #

foldr' :: (a -> b -> b) -> b -> URec (Ptr ()) a -> b #

foldl :: (b -> a -> b) -> b -> URec (Ptr ()) a -> b #

foldl' :: (b -> a -> b) -> b -> URec (Ptr ()) a -> b #

foldr1 :: (a -> a -> a) -> URec (Ptr ()) a -> a #

foldl1 :: (a -> a -> a) -> URec (Ptr ()) a -> a #

toList :: URec (Ptr ()) a -> [a] #

null :: URec (Ptr ()) a -> Bool #

length :: URec (Ptr ()) a -> Int #

elem :: Eq a => a -> URec (Ptr ()) a -> Bool #

maximum :: Ord a => URec (Ptr ()) a -> a #

minimum :: Ord a => URec (Ptr ()) a -> a #

sum :: Num a => URec (Ptr ()) a -> a #

product :: Num a => URec (Ptr ()) a -> a #

Traversable (URec (Ptr ()) :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> URec (Ptr ()) a -> f (URec (Ptr ()) b) #

sequenceA :: Applicative f => URec (Ptr ()) (f a) -> f (URec (Ptr ()) a) #

mapM :: Monad m => (a -> m b) -> URec (Ptr ()) a -> m (URec (Ptr ()) b) #

sequence :: Monad m => URec (Ptr ()) (m a) -> m (URec (Ptr ()) a) #

Eq (URec (Ptr ()) p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

(==) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool #

(/=) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool #

Ord (URec (Ptr ()) p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

compare :: URec (Ptr ()) p -> URec (Ptr ()) p -> Ordering #

(<) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool #

(<=) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool #

(>) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool #

(>=) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool #

max :: URec (Ptr ()) p -> URec (Ptr ()) p -> URec (Ptr ()) p #

min :: URec (Ptr ()) p -> URec (Ptr ()) p -> URec (Ptr ()) p #

Generic (URec (Ptr ()) p) 
Instance details

Defined in GHC.Generics

Associated Types

type Rep (URec (Ptr ()) p) :: Type -> Type #

Methods

from :: URec (Ptr ()) p -> Rep (URec (Ptr ()) p) x #

to :: Rep (URec (Ptr ()) p) x -> URec (Ptr ()) p #

data URec (Ptr ()) (p :: k)

Used for marking occurrences of Addr#

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

data URec (Ptr ()) (p :: k) = UAddr {}
type Rep1 (URec (Ptr ()) :: k -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

type Rep1 (URec (Ptr ()) :: k -> Type) = D1 (MetaData "URec" "GHC.Generics" "base" False) (C1 (MetaCons "UAddr" PrefixI True) (S1 (MetaSel (Just "uAddr#") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (UAddr :: k -> Type)))
type Rep (URec (Ptr ()) p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

type Rep (URec (Ptr ()) p) = D1 (MetaData "URec" "GHC.Generics" "base" False) (C1 (MetaCons "UAddr" PrefixI True) (S1 (MetaSel (Just "uAddr#") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (UAddr :: Type -> Type)))

data FunPtr a #

A value of type FunPtr a is a pointer to a function callable from foreign code. The type a will normally be a foreign type, a function type with zero or more arguments where

A value of type FunPtr a may be a pointer to a foreign function, either returned by another foreign function or imported with a a static address import like

foreign import ccall "stdlib.h &free"
  p_free :: FunPtr (Ptr a -> IO ())

or a pointer to a Haskell function created using a wrapper stub declared to produce a FunPtr of the correct type. For example:

type Compare = Int -> Int -> Bool
foreign import ccall "wrapper"
  mkCompare :: Compare -> IO (FunPtr Compare)

Calls to wrapper stubs like mkCompare allocate storage, which should be released with freeHaskellFunPtr when no longer required.

To convert FunPtr values to corresponding Haskell functions, one can define a dynamic stub for the specific foreign type, e.g.

type IntFunction = CInt -> IO ()
foreign import ccall "dynamic"
  mkFun :: FunPtr IntFunction -> IntFunction
Instances
Eq (FunPtr a) 
Instance details

Defined in GHC.Ptr

Methods

(==) :: FunPtr a -> FunPtr a -> Bool #

(/=) :: FunPtr a -> FunPtr a -> Bool #

Ord (FunPtr a) 
Instance details

Defined in GHC.Ptr

Methods

compare :: FunPtr a -> FunPtr a -> Ordering #

(<) :: FunPtr a -> FunPtr a -> Bool #

(<=) :: FunPtr a -> FunPtr a -> Bool #

(>) :: FunPtr a -> FunPtr a -> Bool #

(>=) :: FunPtr a -> FunPtr a -> Bool #

max :: FunPtr a -> FunPtr a -> FunPtr a #

min :: FunPtr a -> FunPtr a -> FunPtr a #

Show (FunPtr a)

Since: base-2.1

Instance details

Defined in GHC.Ptr

Methods

showsPrec :: Int -> FunPtr a -> ShowS #

show :: FunPtr a -> String #

showList :: [FunPtr a] -> ShowS #

Storable (FunPtr a)

Since: base-2.1

Instance details

Defined in Foreign.Storable

Methods

sizeOf :: FunPtr a -> Int #

alignment :: FunPtr a -> Int #

peekElemOff :: Ptr (FunPtr a) -> Int -> IO (FunPtr a) #

pokeElemOff :: Ptr (FunPtr a) -> Int -> FunPtr a -> IO () #

peekByteOff :: Ptr b -> Int -> IO (FunPtr a) #

pokeByteOff :: Ptr b -> Int -> FunPtr a -> IO () #

peek :: Ptr (FunPtr a) -> IO (FunPtr a) #

poke :: Ptr (FunPtr a) -> FunPtr a -> IO () #

Prim (FunPtr a) 
Instance details

Defined in Data.Primitive.Types

data ForeignPtr a #

The type ForeignPtr represents references to objects that are maintained in a foreign language, i.e., that are not part of the data structures usually managed by the Haskell storage manager. The essential difference between ForeignPtrs and vanilla memory references of type Ptr a is that the former may be associated with finalizers. A finalizer is a routine that is invoked when the Haskell storage manager detects that - within the Haskell heap and stack - there are no more references left that are pointing to the ForeignPtr. Typically, the finalizer will, then, invoke routines in the foreign language that free the resources bound by the foreign object.

The ForeignPtr is parameterised in the same way as Ptr. The type argument of ForeignPtr should normally be an instance of class Storable.

Instances
Eq (ForeignPtr a)

Since: base-2.1

Instance details

Defined in GHC.ForeignPtr

Methods

(==) :: ForeignPtr a -> ForeignPtr a -> Bool #

(/=) :: ForeignPtr a -> ForeignPtr a -> Bool #

Ord (ForeignPtr a)

Since: base-2.1

Instance details

Defined in GHC.ForeignPtr

Show (ForeignPtr a)

Since: base-2.1

Instance details

Defined in GHC.ForeignPtr

pooledNewArray0 :: Storable a => Pool -> a -> [a] -> IO (Ptr a) #

Allocate consecutive storage for a list of values in the given pool and marshal these values into it, terminating the end with the given marker.

pooledNewArray :: Storable a => Pool -> [a] -> IO (Ptr a) #

Allocate consecutive storage for a list of values in the given pool and marshal these values into it.

pooledNew :: Storable a => Pool -> a -> IO (Ptr a) #

Allocate storage for a value in the given pool and marshal the value into this storage.

pooledReallocArray0 :: Storable a => Pool -> Ptr a -> Int -> IO (Ptr a) #

Adjust the size of an array with an end marker in the given pool.

pooledReallocArray :: Storable a => Pool -> Ptr a -> Int -> IO (Ptr a) #

Adjust the size of an array in the given pool.

pooledMallocArray0 :: Storable a => Pool -> Int -> IO (Ptr a) #

Allocate storage for the given number of elements of a storable type in the pool, but leave room for an extra element to signal the end of the array.

pooledMallocArray :: Storable a => Pool -> Int -> IO (Ptr a) #

Allocate storage for the given number of elements of a storable type in the pool.

pooledReallocBytes :: Pool -> Ptr a -> Int -> IO (Ptr a) #

Adjust the storage area for an element in the pool to the given size.

pooledRealloc :: Storable a => Pool -> Ptr a -> IO (Ptr a) #

Adjust the storage area for an element in the pool to the given size of the required type.

pooledMallocBytes :: Pool -> Int -> IO (Ptr a) #

Allocate the given number of bytes of storage in the pool.

pooledMalloc :: Storable a => Pool -> IO (Ptr a) #

Allocate space for storable type in the given pool. The size of the area allocated is determined by the sizeOf method from the instance of Storable for the appropriate type.

withPool :: (Pool -> IO b) -> IO b #

Execute an action with a fresh memory pool, which gets automatically deallocated (including its contents) after the action has finished.

freePool :: Pool -> IO () #

Deallocate a memory pool and everything which has been allocated in the pool itself.

newPool :: IO Pool #

Allocate a fresh memory pool.

data Pool #

A memory pool.

withCWStringLen :: String -> (CWStringLen -> IO a) -> IO a #

Marshal a Haskell string into a C wide string (i.e. wide character array) in temporary storage, with explicit length information.

  • the memory is freed when the subcomputation terminates (either normally or via an exception), so the pointer to the temporary storage must not be used after this.

withCWString :: String -> (CWString -> IO a) -> IO a #

Marshal a Haskell string into a NUL terminated C wide string using temporary storage.

  • the Haskell string may not contain any NUL characters
  • the memory is freed when the subcomputation terminates (either normally or via an exception), so the pointer to the temporary storage must not be used after this.

newCWStringLen :: String -> IO CWStringLen #

Marshal a Haskell string into a C wide string (ie, wide character array) with explicit length information.

  • new storage is allocated for the C wide string and must be explicitly freed using free or finalizerFree.

newCWString :: String -> IO CWString #

Marshal a Haskell string into a NUL terminated C wide string.

  • the Haskell string may not contain any NUL characters
  • new storage is allocated for the C wide string and must be explicitly freed using free or finalizerFree.

peekCWStringLen :: CWStringLen -> IO String #

Marshal a C wide string with explicit length into a Haskell string.

peekCWString :: CWString -> IO String #

Marshal a NUL terminated C wide string into a Haskell string.

withCAStringLen :: String -> (CStringLen -> IO a) -> IO a #

Marshal a Haskell string into a C string (ie, character array) in temporary storage, with explicit length information.

  • the memory is freed when the subcomputation terminates (either normally or via an exception), so the pointer to the temporary storage must not be used after this.

withCAString :: String -> (CString -> IO a) -> IO a #

Marshal a Haskell string into a NUL terminated C string using temporary storage.

  • the Haskell string may not contain any NUL characters
  • the memory is freed when the subcomputation terminates (either normally or via an exception), so the pointer to the temporary storage must not be used after this.

newCAStringLen :: String -> IO CStringLen #

Marshal a Haskell string into a C string (ie, character array) with explicit length information.

  • new storage is allocated for the C string and must be explicitly freed using free or finalizerFree.

newCAString :: String -> IO CString #

Marshal a Haskell string into a NUL terminated C string.

  • the Haskell string may not contain any NUL characters
  • new storage is allocated for the C string and must be explicitly freed using free or finalizerFree.

peekCAStringLen :: CStringLen -> IO String #

Marshal a C string with explicit length into a Haskell string.

peekCAString :: CString -> IO String #

Marshal a NUL terminated C string into a Haskell string.

castCharToCSChar :: Char -> CSChar #

Convert a Haskell character to a C signed char. This function is only safe on the first 256 characters.

castCSCharToChar :: CSChar -> Char #

Convert a C signed char, representing a Latin-1 character, to the corresponding Haskell character.

castCharToCUChar :: Char -> CUChar #

Convert a Haskell character to a C unsigned char. This function is only safe on the first 256 characters.

castCUCharToChar :: CUChar -> Char #

Convert a C unsigned char, representing a Latin-1 character, to the corresponding Haskell character.

castCharToCChar :: Char -> CChar #

Convert a Haskell character to a C character. This function is only safe on the first 256 characters.

castCCharToChar :: CChar -> Char #

Convert a C byte, representing a Latin-1 character, to the corresponding Haskell character.

withCStringLen :: String -> (CStringLen -> IO a) -> IO a #

Marshal a Haskell string into a C string (ie, character array) in temporary storage, with explicit length information.

  • the memory is freed when the subcomputation terminates (either normally or via an exception), so the pointer to the temporary storage must not be used after this.

withCString :: String -> (CString -> IO a) -> IO a #

Marshal a Haskell string into a NUL terminated C string using temporary storage.

  • the Haskell string may not contain any NUL characters
  • the memory is freed when the subcomputation terminates (either normally or via an exception), so the pointer to the temporary storage must not be used after this.

newCStringLen :: String -> IO CStringLen #

Marshal a Haskell string into a C string (ie, character array) with explicit length information.

  • new storage is allocated for the C string and must be explicitly freed using free or finalizerFree.

newCString :: String -> IO CString #

Marshal a Haskell string into a NUL terminated C string.

  • the Haskell string may not contain any NUL characters
  • new storage is allocated for the C string and must be explicitly freed using free or finalizerFree.

peekCStringLen :: CStringLen -> IO String #

Marshal a C string with explicit length into a Haskell string.

peekCString :: CString -> IO String #

Marshal a NUL terminated C string into a Haskell string.

type CString = Ptr CChar #

A C string is a reference to an array of C characters terminated by NUL.

type CStringLen = (Ptr CChar, Int) #

A string with explicit length information in bytes instead of a terminating NUL (allowing NUL characters in the middle of the string).

type CWString = Ptr CWchar #

A C wide string is a reference to an array of C wide characters terminated by NUL.

type CWStringLen = (Ptr CWchar, Int) #

A wide character string with explicit length information in CWchars instead of a terminating NUL (allowing NUL characters in the middle of the string).

advancePtr :: Storable a => Ptr a -> Int -> Ptr a #

Advance a pointer into an array by the given number of elements

lengthArray0 :: (Storable a, Eq a) => a -> Ptr a -> IO Int #

Return the number of elements in an array, excluding the terminator

moveArray :: Storable a => Ptr a -> Ptr a -> Int -> IO () #

Copy the given number of elements from the second array (source) into the first array (destination); the copied areas may overlap

copyArray :: Storable a => Ptr a -> Ptr a -> Int -> IO () #

Copy the given number of elements from the second array (source) into the first array (destination); the copied areas may not overlap

withArrayLen0 :: Storable a => a -> [a] -> (Int -> Ptr a -> IO b) -> IO b #

Like withArrayLen, but a terminator indicates where the array ends

withArray0 :: Storable a => a -> [a] -> (Ptr a -> IO b) -> IO b #

Like withArray, but a terminator indicates where the array ends

withArrayLen :: Storable a => [a] -> (Int -> Ptr a -> IO b) -> IO b #

Like withArray, but the action gets the number of values as an additional parameter

withArray :: Storable a => [a] -> (Ptr a -> IO b) -> IO b #

Temporarily store a list of storable values in memory (like with, but for multiple elements).

newArray0 :: Storable a => a -> [a] -> IO (Ptr a) #

Write a list of storable elements into a newly allocated, consecutive sequence of storable values, where the end is fixed by the given end marker

newArray :: Storable a => [a] -> IO (Ptr a) #

Write a list of storable elements into a newly allocated, consecutive sequence of storable values (like new, but for multiple elements).

pokeArray0 :: Storable a => a -> Ptr a -> [a] -> IO () #

Write the list elements consecutive into memory and terminate them with the given marker element

pokeArray :: Storable a => Ptr a -> [a] -> IO () #

Write the list elements consecutive into memory

peekArray0 :: (Storable a, Eq a) => a -> Ptr a -> IO [a] #

Convert an array terminated by the given end marker into a Haskell list

peekArray :: Storable a => Int -> Ptr a -> IO [a] #

Convert an array of given length into a Haskell list. The implementation is tail-recursive and so uses constant stack space.

reallocArray0 :: Storable a => Ptr a -> Int -> IO (Ptr a) #

Adjust the size of an array including an extra position for the end marker.

reallocArray :: Storable a => Ptr a -> Int -> IO (Ptr a) #

Adjust the size of an array

allocaArray0 :: Storable a => Int -> (Ptr a -> IO b) -> IO b #

Like allocaArray, but add an extra position to hold a special termination element.

allocaArray :: Storable a => Int -> (Ptr a -> IO b) -> IO b #

Temporarily allocate space for the given number of elements (like alloca, but for multiple elements).

callocArray0 :: Storable a => Int -> IO (Ptr a) #

Like callocArray0, but allocated memory is filled with bytes of value zero.

callocArray :: Storable a => Int -> IO (Ptr a) #

Like mallocArray, but allocated memory is filled with bytes of value zero.

mallocArray0 :: Storable a => Int -> IO (Ptr a) #

Like mallocArray, but add an extra position to hold a special termination element.

mallocArray :: Storable a => Int -> IO (Ptr a) #

Allocate storage for the given number of elements of a storable type (like malloc, but for multiple elements).

fillBytes :: Ptr a -> Word8 -> Int -> IO () #

Fill a given number of bytes in memory area with a byte value.

Since: base-4.8.0.0

moveBytes :: Ptr a -> Ptr a -> Int -> IO () #

Copies the given number of bytes from the second area (source) into the first (destination); the copied areas may overlap

copyBytes :: Ptr a -> Ptr a -> Int -> IO () #

Copies the given number of bytes from the second area (source) into the first (destination); the copied areas may not overlap

withMany :: (a -> (b -> res) -> res) -> [a] -> ([b] -> res) -> res #

Replicates a withXXX combinator over a list of objects, yielding a list of marshalled objects

maybePeek :: (Ptr a -> IO b) -> Ptr a -> IO (Maybe b) #

Convert a peek combinator into a one returning Nothing if applied to a nullPtr

maybeWith :: (a -> (Ptr b -> IO c) -> IO c) -> Maybe a -> (Ptr b -> IO c) -> IO c #

Converts a withXXX combinator into one marshalling a value wrapped into a Maybe, using nullPtr to represent Nothing.

maybeNew :: (a -> IO (Ptr b)) -> Maybe a -> IO (Ptr b) #

Allocate storage and marshal a storable value wrapped into a Maybe

toBool :: (Eq a, Num a) => a -> Bool #

Convert a Boolean in numeric representation to a Haskell value

fromBool :: Num a => Bool -> a #

Convert a Haskell Bool to its numeric representation

with :: Storable a => a -> (Ptr a -> IO b) -> IO b #

with val f executes the computation f, passing as argument a pointer to a temporarily allocated block of memory into which val has been marshalled (the combination of alloca and poke).

The memory is freed when f terminates (either normally or via an exception), so the pointer passed to f must not be used after this.

new :: Storable a => a -> IO (Ptr a) #

Allocate a block of memory and marshal a value into it (the combination of malloc and poke). The size of the area allocated is determined by the sizeOf method from the instance of Storable for the appropriate type.

The memory may be deallocated using free or finalizerFree when no longer required.

free :: Ptr a -> IO () #

Free a block of memory that was allocated with malloc, mallocBytes, realloc, reallocBytes, new or any of the newX functions in Foreign.Marshal.Array or Foreign.C.String.

reallocBytes :: Ptr a -> Int -> IO (Ptr a) #

Resize a memory area that was allocated with malloc or mallocBytes to the given size. The returned pointer may refer to an entirely different memory area, but will be sufficiently aligned for any of the basic foreign types that fits into a memory block of the given size. The contents of the referenced memory area will be the same as of the original pointer up to the minimum of the original size and the given size.

If the pointer argument to reallocBytes is nullPtr, reallocBytes behaves like malloc. If the requested size is 0, reallocBytes behaves like free.

realloc :: Storable b => Ptr a -> IO (Ptr b) #

Resize a memory area that was allocated with malloc or mallocBytes to the size needed to store values of type b. The returned pointer may refer to an entirely different memory area, but will be suitably aligned to hold values of type b. The contents of the referenced memory area will be the same as of the original pointer up to the minimum of the original size and the size of values of type b.

If the argument to realloc is nullPtr, realloc behaves like malloc.

allocaBytesAligned :: Int -> Int -> (Ptr a -> IO b) -> IO b #

allocaBytes :: Int -> (Ptr a -> IO b) -> IO b #

allocaBytes n f executes the computation f, passing as argument a pointer to a temporarily allocated block of memory of n bytes. The block of memory is sufficiently aligned for any of the basic foreign types that fits into a memory block of the allocated size.

The memory is freed when f terminates (either normally or via an exception), so the pointer passed to f must not be used after this.

alloca :: Storable a => (Ptr a -> IO b) -> IO b #

alloca f executes the computation f, passing as argument a pointer to a temporarily allocated block of memory sufficient to hold values of type a.

The memory is freed when f terminates (either normally or via an exception), so the pointer passed to f must not be used after this.

callocBytes :: Int -> IO (Ptr a) #

Llike mallocBytes but memory is filled with bytes of value zero.

mallocBytes :: Int -> IO (Ptr a) #

Allocate a block of memory of the given number of bytes. The block of memory is sufficiently aligned for any of the basic foreign types that fits into a memory block of the allocated size.

The memory may be deallocated using free or finalizerFree when no longer required.

calloc :: Storable a => IO (Ptr a) #

Like malloc but memory is filled with bytes of value zero.

malloc :: Storable a => IO (Ptr a) #

Allocate a block of memory that is sufficient to hold values of type a. The size of the area allocated is determined by the sizeOf method from the instance of Storable for the appropriate type.

The memory may be deallocated using free or finalizerFree when no longer required.

finalizerFree :: FinalizerPtr a #

A pointer to a foreign function equivalent to free, which may be used as a finalizer (cf ForeignPtr) for storage allocated with malloc, mallocBytes, realloc or reallocBytes.

void :: IO a -> IO () #

Discard the return value of an IO action

throwIfNull :: String -> IO (Ptr a) -> IO (Ptr a) #

Guards against null pointers

throwIfNeg_ :: (Ord a, Num a) => (a -> String) -> IO a -> IO () #

Like throwIfNeg, but discarding the result

throwIfNeg :: (Ord a, Num a) => (a -> String) -> IO a -> IO a #

Guards against negative result values

throwIf_ :: (a -> Bool) -> (a -> String) -> IO a -> IO () #

Like throwIf, but discarding the result

throwIf #

Arguments

:: (a -> Bool)

error condition on the result of the IO action

-> (a -> String)

computes an error message from erroneous results of the IO action

-> IO a

the IO action to be executed

-> IO a 

Execute an IO action, throwing a userError if the predicate yields True when applied to the result returned by the IO action. If no exception is raised, return the result of the computation.

mallocForeignPtrArray0 :: Storable a => Int -> IO (ForeignPtr a) #

This function is similar to mallocArray0, but yields a memory area that has a finalizer attached that releases the memory area. As with mallocForeignPtr, it is not guaranteed that the block of memory was allocated by malloc.

mallocForeignPtrArray :: Storable a => Int -> IO (ForeignPtr a) #

This function is similar to mallocArray, but yields a memory area that has a finalizer attached that releases the memory area. As with mallocForeignPtr, it is not guaranteed that the block of memory was allocated by malloc.

newForeignPtrEnv :: FinalizerEnvPtr env a -> Ptr env -> Ptr a -> IO (ForeignPtr a) #

This variant of newForeignPtr adds a finalizer that expects an environment in addition to the finalized pointer. The environment that will be passed to the finalizer is fixed by the second argument to newForeignPtrEnv.

withForeignPtr :: ForeignPtr a -> (Ptr a -> IO b) -> IO b #

This is a way to look at the pointer living inside a foreign object. This function takes a function which is applied to that pointer. The resulting IO action is then executed. The foreign object is kept alive at least during the whole action, even if it is not used directly inside. Note that it is not safe to return the pointer from the action and use it after the action completes. All uses of the pointer should be inside the withForeignPtr bracket. The reason for this unsafeness is the same as for unsafeForeignPtrToPtr below: the finalizer may run earlier than expected, because the compiler can only track usage of the ForeignPtr object, not a Ptr object made from it.

This function is normally used for marshalling data to or from the object pointed to by the ForeignPtr, using the operations from the Storable class.

newForeignPtr :: FinalizerPtr a -> Ptr a -> IO (ForeignPtr a) #

Turns a plain memory reference into a foreign pointer, and associates a finalizer with the reference. The finalizer will be executed after the last reference to the foreign object is dropped. There is no guarantee of promptness, however the finalizer will be executed before the program exits.

finalizeForeignPtr :: ForeignPtr a -> IO () #

Causes the finalizers associated with a foreign pointer to be run immediately.

plusForeignPtr :: ForeignPtr a -> Int -> ForeignPtr b #

Advances the given address by the given offset in bytes.

The new ForeignPtr shares the finalizer of the original, equivalent from a finalization standpoint to just creating another reference to the original. That is, the finalizer will not be called before the new ForeignPtr is unreachable, nor will it be called an additional time due to this call, and the finalizer will be called with the same address that it would have had this call not happened, *not* the new address.

Since: base-4.10.0.0

castForeignPtr :: ForeignPtr a -> ForeignPtr b #

This function casts a ForeignPtr parameterised by one type into another type.

touchForeignPtr :: ForeignPtr a -> IO () #

This function ensures that the foreign object in question is alive at the given place in the sequence of IO actions. In particular withForeignPtr does a touchForeignPtr after it executes the user action.

Note that this function should not be used to express dependencies between finalizers on ForeignPtrs. For example, if the finalizer for a ForeignPtr F1 calls touchForeignPtr on a second ForeignPtr F2, then the only guarantee is that the finalizer for F2 is never started before the finalizer for F1. They might be started together if for example both F1 and F2 are otherwise unreachable, and in that case the scheduler might end up running the finalizer for F2 first.

In general, it is not recommended to use finalizers on separate objects with ordering constraints between them. To express the ordering robustly requires explicit synchronisation using MVars between the finalizers, but even then the runtime sometimes runs multiple finalizers sequentially in a single thread (for performance reasons), so synchronisation between finalizers could result in artificial deadlock. Another alternative is to use explicit reference counting.

newForeignPtr_ :: Ptr a -> IO (ForeignPtr a) #

Turns a plain memory reference into a foreign pointer that may be associated with finalizers by using addForeignPtrFinalizer.

addForeignPtrFinalizerEnv :: FinalizerEnvPtr env a -> Ptr env -> ForeignPtr a -> IO () #

Like addForeignPtrFinalizerEnv but allows the finalizer to be passed an additional environment parameter to be passed to the finalizer. The environment passed to the finalizer is fixed by the second argument to addForeignPtrFinalizerEnv

addForeignPtrFinalizer :: FinalizerPtr a -> ForeignPtr a -> IO () #

This function adds a finalizer to the given foreign object. The finalizer will run before all other finalizers for the same object which have already been registered.

mallocForeignPtrBytes :: Int -> IO (ForeignPtr a) #

This function is similar to mallocForeignPtr, except that the size of the memory required is given explicitly as a number of bytes.

mallocForeignPtr :: Storable a => IO (ForeignPtr a) #

Allocate some memory and return a ForeignPtr to it. The memory will be released automatically when the ForeignPtr is discarded.

mallocForeignPtr is equivalent to

   do { p <- malloc; newForeignPtr finalizerFree p }

although it may be implemented differently internally: you may not assume that the memory returned by mallocForeignPtr has been allocated with malloc.

GHC notes: mallocForeignPtr has a heavily optimised implementation in GHC. It uses pinned memory in the garbage collected heap, so the ForeignPtr does not require a finalizer to free the memory. Use of mallocForeignPtr and associated functions is strongly recommended in preference to newForeignPtr with a finalizer.

type FinalizerPtr a = FunPtr (Ptr a -> IO ()) #

A finalizer is represented as a pointer to a foreign function that, at finalisation time, gets as an argument a plain pointer variant of the foreign pointer that the finalizer is associated with.

Note that the foreign function must use the ccall calling convention.

type FinalizerEnvPtr env a = FunPtr (Ptr env -> Ptr a -> IO ()) #<