----------------------------------------------------------------------------- -- | -- Module : Data.Unfolder -- Copyright : (c) Sjoerd Visscher 2014 -- License : BSD-style (see the file LICENSE) -- -- Maintainer : sjoerd@w3future.com -- Stability : experimental -- Portability : non-portable -- -- Unfolders provide a way to unfold data structures. -- They are basically 'Alternative' instances, but the 'choose' method -- allows the unfolder to do something special for the recursive positions -- of the data structure. ----------------------------------------------------------------------------- {-# LANGUAGE GeneralizedNewtypeDeriving , RankNTypes , Trustworthy , CPP #-} #if !defined(MIN_VERSION_containers) #define MIN_VERSION_containers(x,y,z) 0 #endif module Data.Unfolder ( -- * Unfolder Unfolder(..) , chooseMonadDefault , chooseMapMonadDefault , between , betweenD , boundedEnum , boundedEnumD -- ** Unfolder instances , Random(..) , Arb(..) , arbUnit , NumConst(..) , Nth(..) -- * UnfolderTransformer , UnfolderTransformer(..) , ala , ala2 , ala3 -- ** UnfolderTransformer instances , DualA(..) , NT(..) , WithRec(..) , withRec , limitDepth , BFS(..) , Split , bfs , bfsBySum ) where import Control.Applicative import Control.Monad import Control.Arrow (ArrowZero, ArrowPlus) import Data.Functor.Product import Data.Functor.Compose import Data.Functor.Reverse import Control.Applicative.Backwards import Control.Applicative.Lift import Control.Monad.Trans.Except import Control.Monad.Trans.List import Control.Monad.Trans.Maybe import Control.Monad.Trans.RWS import Control.Monad.Trans.Reader import Control.Monad.Trans.State import Control.Monad.Trans.Writer import qualified System.Random as R import Test.QuickCheck (Arbitrary(..), Gen, oneof, elements, sized, resize) import Data.Monoid (Monoid(..)) import Data.Maybe (catMaybes) import qualified Data.Sequence as S -- | Unfolders provide a way to unfold data structures. -- The methods have default implementations in terms of 'Alternative', -- but you can implement 'chooseMap' to act on recursive positions of the -- data structure, or simply to provide a faster implementation than -- 'foldr ((<|>) . f) empty'. class Alternative f => Unfolder f where -- | Choose one of the values from the list. choose :: [f a] -> f a choose = chooseMap id -- | Choose one of the values from the list and apply the given function. chooseMap :: (a -> f b) -> [a] -> f b chooseMap f = foldr ((<|>) . f) empty -- | Given a number 'n', return a number between '0' and 'n - 1'. chooseInt :: Int -> f Int chooseInt n = chooseMap pure [0 .. n - 1] -- | If an unfolder is monadic, 'choose' can be implemented in terms of 'chooseInt'. chooseMonadDefault :: (Monad m, Unfolder m) => [m a] -> m a chooseMonadDefault ms = chooseInt (length ms) >>= (ms !!) -- | If an unfolder is monadic, 'chooseMap' can be implemented in terms of 'chooseInt'. chooseMapMonadDefault :: (Monad m, Unfolder m) => (a -> m b) -> [a] -> m b chooseMapMonadDefault f as = chooseInt (length as) >>= f . (as !!) -- | If a datatype is enumerable, we can use 'chooseInt' to generate a value. -- This is the function to use if you want to unfold a datatype that has no type arguments (has kind @*@). between :: (Unfolder f, Enum a) => a -> a -> f a between lb ub = (\x -> toEnum (x + fromEnum lb)) <$> chooseInt (1 + fromEnum ub - fromEnum lb) -- | If a datatype is also bounded, we choose between all possible values. -- -- > boundedEnum = between minBound maxBound boundedEnum :: (Unfolder f, Bounded a, Enum a) => f a boundedEnum = between minBound maxBound -- | 'betweenD' uses 'choose' to generate a value. It chooses between the lower bound and one -- of the higher values. This means that f.e. breadth-first unfolding and arbitrary will prefer -- lower values. betweenD :: (Unfolder f, Enum a) => a -> a -> f a betweenD lb0 ub = betweenD' lb0 (fromEnum ub - fromEnum lb0) where betweenD' lb n | n < 0 = empty | otherwise = choose [pure lb, betweenD' (succ lb) (pred n)] -- | > boundedEnumD = betweenD minBound maxBound boundedEnumD :: (Unfolder f, Bounded a, Enum a) => f a boundedEnumD = betweenD minBound maxBound -- | Derived instance. instance MonadPlus m => Unfolder (WrappedMonad m) -- | Derived instance. instance (ArrowZero a, ArrowPlus a) => Unfolder (WrappedArrow a b) -- | Don't choose but return all items. instance Unfolder [] where choose = concat chooseMap = concatMap chooseInt n = [0 .. n - 1] -- | Always choose the first item. instance Unfolder Maybe where choose = foldr const Nothing chooseMap f = foldr (const . f) Nothing chooseInt 0 = Nothing chooseInt _ = Just 0 -- | Derived instance. instance (Unfolder p, Unfolder q) => Unfolder (Product p q) where chooseMap f as = Pair (chooseMap (fstP . f) as) (chooseMap (sndP . f) as) where fstP (Pair p _) = p sndP (Pair _ q) = q chooseInt n = Pair (chooseInt n) (chooseInt n) -- | Derived instance. instance (Unfolder p, Applicative q) => Unfolder (Compose p q) where chooseMap f = Compose . chooseMap (getCompose . f) chooseInt n = Compose $ pure <$> chooseInt n -- | Derived instance. instance Unfolder f => Unfolder (Reverse f) where chooseMap f = Reverse . chooseMap (getReverse . f) chooseInt n = Reverse $ chooseInt n -- | Derived instance. instance Unfolder f => Unfolder (Backwards f) where chooseMap f = Backwards . chooseMap (forwards . f) chooseInt n = Backwards $ chooseInt n -- | Derived instance. instance Unfolder f => Unfolder (Lift f) -- | Derived instance. instance (Functor m, Monad m, Monoid e) => Unfolder (ExceptT e m) -- | Derived instance. instance Applicative f => Unfolder (ListT f) where {-# INLINABLE chooseMap #-} chooseMap f = ListT . foldr appRun (pure []) where appRun x ys = (++) <$> runListT (f x) <*> ys chooseInt n = ListT $ pure [0 .. n - 1] -- | Derived instance. instance (Functor m, Monad m) => Unfolder (MaybeT m) where chooseMap _ [] = MaybeT (return Nothing) chooseMap f (a : as) = MaybeT $ do res <- runMaybeT (f a) case res of Nothing -> runMaybeT $ chooseMap f as Just _ -> return res chooseInt 0 = MaybeT $ return Nothing chooseInt _ = MaybeT $ return (Just 0) -- | Derived instance. instance (Monoid w, MonadPlus m, Unfolder m) => Unfolder (RWST r w s m) where chooseMap f as = RWST $ \r s -> chooseMap (\a -> runRWST (f a) r s) as -- | Derived instance. instance (MonadPlus m, Unfolder m) => Unfolder (StateT s m) where chooseMap f as = StateT $ \s -> chooseMap (\a -> f a `runStateT` s) as -- | Derived instance. instance Unfolder m => Unfolder (ReaderT r m) where chooseMap f as = ReaderT $ \r -> chooseMap (\a -> f a `runReaderT` r) as -- | Derived instance. instance (Monoid w, Unfolder m) => Unfolder (WriterT w m) where chooseMap f = WriterT . chooseMap (runWriterT . f) -- | Don't choose but return all items. instance Unfolder S.Seq where #if MIN_VERSION_containers(0,5,6) chooseInt n = S.fromFunction n id #endif newtype Random g m a = Random { getRandom :: StateT g m a } deriving (Functor, Applicative, Monad) instance (Functor m, Monad m, R.RandomGen g) => Alternative (Random g m) where empty = choose [] a <|> b = choose [a, b] instance (Functor m, Monad m, R.RandomGen g) => MonadPlus (Random g m) where mzero = choose [] mplus a b = choose [a, b] -- | Choose randomly. instance (Functor m, Monad m, R.RandomGen g) => Unfolder (Random g m) where choose = chooseMonadDefault chooseMap = chooseMapMonadDefault chooseInt 0 = Random . StateT $ const (fail "Random chooseInt 0") chooseInt n = Random . StateT $ return . R.randomR (0, n - 1) data Nth a = Nth { size :: Integer , getNth :: Integer -> a } instance Functor Nth where fmap f (Nth sizeA as) = Nth sizeA (f . as) instance Applicative Nth where pure a = Nth 1 (const a) Nth sizeF fs <*> Nth sizeA as = Nth (sizeF * sizeA) $ \n -> let (l, r) = n `divMod` sizeA in fs l (as r) instance Alternative Nth where empty = Nth 0 (const undefined) Nth sizeA as <|> Nth sizeB bs = Nth (sizeA + sizeB) $ \n -> if n < sizeA then as n else bs (n - sizeA) instance Unfolder Nth where chooseInt n = Nth (toInteger n) fromInteger -- | An 'UnfolderTransformer' changes the way an 'Unfolder' unfolds. class UnfolderTransformer t where -- | Lift a computation from the argument unfolder to the constructed unfolder. lift :: Unfolder f => f a -> t f a -- | Run an unfolding function with one argument using an 'UnfolderTransformer', given a way to run the transformer. ala :: (UnfolderTransformer t, Unfolder f) => (t f b -> f b) -> (t f a -> t f b) -> f a -> f b ala lower f = lower . f . lift -- | Run an unfolding function with two arguments using an 'UnfolderTransformer', given a way to run the transformer. ala2 :: (UnfolderTransformer t, Unfolder f) => (t f c -> f c) -> (t f a -> t f b -> t f c) -> f a -> f b -> f c ala2 lower f = ala lower . f . lift -- | Run an unfolding function with three arguments using an 'UnfolderTransformer', given a way to run the transformer. ala3 :: (UnfolderTransformer t, Unfolder f) => (t f d -> f d) -> (t f a -> t f b -> t f c -> t f d) -> f a -> f b -> f c -> f d ala3 lower f = ala2 lower . f . lift -- | 'DualA' flips the @\<|>@ operator from `Alternative`. newtype DualA f a = DualA { getDualA :: f a } deriving (Eq, Show, Functor, Applicative) instance Alternative f => Alternative (DualA f) where empty = DualA empty DualA a <|> DualA b = DualA (b <|> a) -- | Reverse the list passed to choose. instance Unfolder f => Unfolder (DualA f) where chooseMap f = DualA . chooseMap (getDualA . f) . reverse chooseInt n = DualA $ (\x -> n - 1 - x) <$> chooseInt n instance UnfolderTransformer DualA where lift = DualA -- | Natural transformations data NT f g = NT { getNT :: forall a. f a -> g a } newtype WithRec f a = WithRec { getWithRec :: ReaderT (Int -> NT f f) f a } deriving (Functor, Applicative, Alternative) -- | Applies a certain function depending on the depth at every recursive position. instance Unfolder f => Unfolder (WithRec f) where chooseMap h as = WithRec . ReaderT $ \f -> getNT (f 0) $ chooseMap (withRec (f . succ) . h) as instance UnfolderTransformer WithRec where lift = WithRec . ReaderT . const -- | Apply a certain function of type @f a -> f a@ to the result of a 'choose'. -- The depth is passed as 'Int', so you can apply a different function at each depth. -- Because of a @forall@, the function needs to be wrapped in a 'NT' constructor. -- See 'limitDepth' for an example how to use this function. withRec :: (Int -> NT f f) -> WithRec f a -> f a withRec f = (`runReaderT` f) . getWithRec -- | Limit the depth of an unfolding. limitDepth :: Unfolder f => Int -> WithRec f a -> f a limitDepth m = withRec (\d -> NT $ if d == m then const empty else id) -- | Return a generator of values of a given depth. -- Returns 'Nothing' if there are no values of that depth or deeper. -- The depth is the number of 'choose' calls. newtype BFS f x = BFS { getBFS :: (Int, Split) -> Maybe [f x] } type Split = Int -> [(Int, Int)] instance Functor f => Functor (BFS f) where fmap f = BFS . (fmap (map (fmap f)) .) . getBFS instance Applicative f => Applicative (BFS f) where pure = packBFS . pure BFS ff <*> BFS fx = BFS $ \(d, split) -> flattenBFS $ [ liftA2 (liftA2 (<*>)) (ff (i, split)) (fx (j, split)) | (i, j) <- split d ] instance Applicative f => Alternative (BFS f) where empty = BFS $ \(d, _) -> if d == 0 then Just [] else Nothing BFS fa <|> BFS fb = BFS $ \d -> flattenBFS [fa d, fb d] -- | Choose between values of a given depth only. instance Applicative f => Unfolder (BFS f) where chooseMap f as = BFS $ \(d, split) -> if d == 0 then Just [] else flattenBFS (map (\a -> f a `getBFS` (d - 1, split)) as) instance UnfolderTransformer BFS where lift = packBFS bySum :: Split bySum d = [(i, d - i)| i <- [0 .. d]] byMax :: Split byMax d = [(i, d)| i <- [0 .. d - 1]] ++ [(d, i)| i <- [0 .. d]] bfsBy :: Unfolder f => Split -> BFS f x -> f x bfsBy split (BFS f) = choose (loop 0) where loop d = maybe [] (++ loop (d + 1)) (f (d, split)) -- | Change the order of unfolding to be breadth-first, by maximum depth of the components. bfs :: Unfolder f => BFS f x -> f x bfs = bfsBy byMax -- | Change the order of unfolding to be breadth-first, by the sum of depths of the components. bfsBySum :: Unfolder f => BFS f x -> f x bfsBySum = bfsBy bySum packBFS :: f x -> BFS f x packBFS r = BFS $ \(d, _) -> if d == 0 then Just [r] else Nothing flattenBFS :: [Maybe [a]] -> Maybe [a] flattenBFS ms = case catMaybes ms of [] -> Nothing ms' -> Just (concat ms') -- | A variant of Test.QuickCheck.Gen, with failure -- and a count of the number of recursive positions. data Arb a = Arb Int (Gen (Maybe a)) instance Functor Arb where fmap f (Arb i g) = Arb i $ fmap (fmap f) g instance Applicative Arb where pure = Arb 0 . pure . pure Arb i1 ff <*> Arb i2 fx = Arb (i1 + i2) $ liftA2 (<*>) ff fx instance Alternative Arb where empty = Arb 0 (pure Nothing) Arb ia fa <|> Arb ib fb = Arb ((ia + ib + 1) `div` 2) $ oneof [fa, fb] -- | Limit the depth of the generated data structure by -- dividing the given size by the number of recursive positions. instance Unfolder Arb where chooseMap f as = Arb 1 $ sized g where g 0 = pure Nothing g n = flatMapArb ((\(Arb i gen) -> resize (n `div` max i 1) gen) . f) as flatMapArb :: (a -> Gen (Maybe b)) -> [a] -> Gen (Maybe b) flatMapArb f = go [] where go [] [] = pure Nothing go as [] = Just <$> elements as go as (g:gs) = f g >>= \ma -> go (maybe as (:as) ma) gs arbUnit :: Arbitrary a => Arb a arbUnit = Arb 0 (Just <$> arbitrary) -- | Variant of 'Data.Functor.Constant' that does multiplication of the constants for @\<*>@ and addition for @\<|>@. newtype NumConst a x = NumConst { getNumConst :: a } deriving (Eq, Show) instance Functor (NumConst a) where fmap _ (NumConst a) = NumConst a instance Num a => Applicative (NumConst a) where pure _ = NumConst 1 NumConst a <*> NumConst b = NumConst $ a * b instance Num a => Alternative (NumConst a) where empty = NumConst 0 NumConst a <|> NumConst b = NumConst $ a + b -- | Unfolds to a constant numeric value. Useful for counting shapes. instance Num a => Unfolder (NumConst a)