{-# LANGUAGE MultiParamTypeClasses , FlexibleInstances , UndecidableInstances #-} {-# OPTIONS_GHC -Wall -fwarn-tabs #-} ---------------------------------------------------------------- -- ~ 2012.03.18 -- | -- Module : Control.Unification.IntVar -- Copyright : Copyright (c) 2007--2012 wren ng thornton -- License : BSD -- Maintainer : wren@community.haskell.org -- Stability : experimental -- Portability : semi-portable (MPTCs,...) -- -- This module defines a state monad for functional pointers -- represented by integers as keys into an @IntMap@. This technique -- was independently discovered by Dijkstra et al. This module -- extends the approach by using a state monad transformer, which -- can be made into a backtracking state monad by setting the -- underlying monad to some 'MonadLogic' (part of the @logict@ -- library, described by Kiselyov et al.). -- -- * Atze Dijkstra, Arie Middelkoop, S. Doaitse Swierstra (2008) -- /Efficient Functional Unification and Substitution/, -- Technical Report UU-CS-2008-027, Utrecht University. -- -- * Oleg Kiselyov, Chung-chieh Shan, Daniel P. Friedman, and -- Amr Sabry (2005) /Backtracking, Interleaving, and/ -- /Terminating Monad Transformers/, ICFP. ---------------------------------------------------------------- module Control.Unification.IntVar ( IntVar(..) , IntBindingState() , IntBindingT() , runIntBindingT , evalIntBindingT , execIntBindingT ) where import Prelude hiding (mapM, sequence, foldr, foldr1, foldl, foldl1) import qualified Data.IntMap as IM import Control.Applicative import Control.Monad (MonadPlus(..), liftM) import Control.Monad.Trans (MonadTrans(..)) import Control.Monad.State (MonadState(..), StateT, runStateT, evalStateT, execStateT, gets) import Control.Monad.Logic (MonadLogic(..)) import Control.Unification.Types ---------------------------------------------------------------- ---------------------------------------------------------------- -- | A \"mutable\" unification variable implemented by an integer. -- This provides an entirely pure alternative to truly mutable -- alternatives (like @STVar@), which can make backtracking easier. -- -- N.B., because this implementation is pure, we can use it for -- both ranked and unranked monads. newtype IntVar = IntVar Int deriving (Show, Eq) {- -- BUG: This part works, but we'd want to change Show IntBindingState too. instance Show IntVar where show (IntVar i) = "IntVar " ++ show (boundedInt2Word i) -- | Convert an integer to a word, via the continuous mapping that -- preserves @minBound@ and @maxBound@. boundedInt2Word :: Int -> Word boundedInt2Word i | i < 0 = fromIntegral (i + maxBound + 1) | otherwise = fromIntegral i + fromIntegral (maxBound :: Int) + 1 -} instance Variable IntVar where getVarID (IntVar v) = v ---------------------------------------------------------------- -- | Binding state for 'IntVar'. data IntBindingState t = IntBindingState { nextFreeVar :: {-# UNPACK #-} !Int , varBindings :: IM.IntMap (UTerm t IntVar) } -- Can't derive this because it's an UndecidableInstance instance (Show (t (UTerm t IntVar))) => Show (IntBindingState t) where show (IntBindingState nr bs) = "IntBindingState { nextFreeVar = "++show nr++ ", varBindings = "++show bs++"}" -- | The initial @IntBindingState@. emptyIntBindingState :: IntBindingState t emptyIntBindingState = IntBindingState minBound IM.empty ---------------------------------------------------------------- -- | A monad for storing 'IntVar' bindings, implemented as a 'StateT'. -- For a plain state monad, set @m = Identity@; for a backtracking -- state monad, set @m = Logic@. newtype IntBindingT t m a = IBT { unIBT :: StateT (IntBindingState t) m a } -- For portability reasons, we're intentionally avoiding -- -XDeriveFunctor, -XGeneralizedNewtypeDeriving, and the like. instance (Functor m) => Functor (IntBindingT t m) where fmap f = IBT . fmap f . unIBT -- BUG: can't reduce dependency to Applicative because of StateT's instance. instance (Functor m, Monad m) => Applicative (IntBindingT t m) where pure = IBT . pure x <*> y = IBT (unIBT x <*> unIBT y) x *> y = IBT (unIBT x *> unIBT y) x <* y = IBT (unIBT x <* unIBT y) instance (Monad m) => Monad (IntBindingT t m) where return = IBT . return m >>= f = IBT (unIBT m >>= unIBT . f) instance MonadTrans (IntBindingT t) where lift = IBT . lift -- BUG: can't reduce dependency to Alternative because of StateT's instance. instance (Functor m, MonadPlus m) => Alternative (IntBindingT t m) where empty = IBT empty x <|> y = IBT (unIBT x <|> unIBT y) instance (MonadPlus m) => MonadPlus (IntBindingT t m) where mzero = IBT mzero mplus ml mr = IBT (mplus (unIBT ml) (unIBT mr)) instance (Monad m) => MonadState (IntBindingState t) (IntBindingT t m) where get = IBT get put = IBT . put -- N.B., we already have (MonadLogic m) => MonadLogic (StateT s m), -- provided that logict is compiled against the same mtl/monads-fd -- we're getting StateT from. Otherwise we'll get a bunch of warnings -- here. instance (MonadLogic m) => MonadLogic (IntBindingT t m) where msplit (IBT m) = IBT (coerce `liftM` msplit m) where coerce Nothing = Nothing coerce (Just (a, m')) = Just (a, IBT m') interleave (IBT l) (IBT r) = IBT (interleave l r) IBT m >>- f = IBT (m >>- (unIBT . f)) ifte (IBT b) t (IBT f) = IBT (ifte b (unIBT . t) f) once (IBT m) = IBT (once m) ---------------------------------------------------------------- runIntBindingT :: IntBindingT t m a -> m (a, IntBindingState t) runIntBindingT (IBT m) = runStateT m emptyIntBindingState -- | N.B., you should explicitly apply bindings before calling this -- function, or else the bindings will be lost evalIntBindingT :: (Monad m) => IntBindingT t m a -> m a evalIntBindingT (IBT m) = evalStateT m emptyIntBindingState execIntBindingT :: (Monad m) => IntBindingT t m a -> m (IntBindingState t) execIntBindingT (IBT m) = execStateT m emptyIntBindingState ---------------------------------------------------------------- instance (Unifiable t, Applicative m, Monad m) => BindingMonad t IntVar (IntBindingT t m) where lookupVar (IntVar v) = IBT $ gets (IM.lookup v . varBindings) freeVar = IBT $ do ibs <- get let v = nextFreeVar ibs if v == maxBound then error "freeVar: no more variables!" else do put $ ibs { nextFreeVar = v+1 } return $ IntVar v newVar t = IBT $ do ibs <- get let v = nextFreeVar ibs if v == maxBound then error "newVar: no more variables!" else do let bs' = IM.insert v t (varBindings ibs) put $ ibs { nextFreeVar = v+1, varBindings = bs' } return $ IntVar v bindVar (IntVar v) t = IBT $ do ibs <- get let bs' = IM.insert v t (varBindings ibs) put $ ibs { varBindings = bs' } ---------------------------------------------------------------- ----------------------------------------------------------- fin.