-- | An implementation of Tarjan's UNION-FIND algorithm. (Robert E -- Tarjan. \"Efficiency of a Good But Not Linear Set Union Algorithm\", JACM -- 22(2), 1975) -- -- The algorithm implements three operations efficiently (all amortised -- @O(1)@): -- -- 1. Check whether two elements are in the same equivalence class. -- -- 2. Create a union of two equivalence classes. -- -- 3. Look up the descriptor of the equivalence class. -- -- The implementation is based on mutable references. Each -- equivalence class has exactly one member that serves as its -- representative element. Every element either is the representative -- element of its equivalence class or points to another element in -- the same equivalence class. Equivalence testing thus consists of -- following the pointers to the representative elements and then -- comparing these for identity. -- -- The algorithm performs lazy path compression. That is, whenever we -- walk along a path greater than length 1 we automatically update the -- pointers along the path to directly point to the representative -- element. Consequently future lookups will be have a path length of -- at most 1. -- {-# OPTIONS_GHC -funbox-strict-fields #-} module Data.UnionFind.ST ( Point, fresh, repr, union, union', equivalent, redundant, descriptor, setDescriptor, modifyDescriptor ) where import Control.Applicative import Control.Monad ( when ) import Control.Monad.ST import Data.STRef -- | The abstract type of an element of the sets we work on. It is -- parameterised over the type of the descriptor. newtype Point s a = Pt (STRef s (Link s a)) deriving Eq data Link s a = Info {-# UNPACK #-} !(STRef s (Info a)) -- ^ This is the descriptive element of the equivalence class. | Link {-# UNPACK #-} !(Point s a) -- ^ Pointer to some other element of the equivalence class. deriving Eq data Info a = MkInfo { weight :: {-# UNPACK #-} !Int -- ^ The size of the equivalence class, used by 'union'. , descr :: a } deriving Eq -- | /O(1)/. Create a fresh point and return it. A fresh point is in -- the equivalence class that contains only itself. fresh :: a -> ST s (Point s a) fresh desc = do info <- newSTRef (MkInfo { weight = 1, descr = desc }) l <- newSTRef (Info info) return (Pt l) -- | /O(1)/. @repr point@ returns the representative point of -- @point@'s equivalence class. -- -- This method performs the path compresssion. repr :: Point s a -> ST s (Point s a) repr point@(Pt l) = do link <- readSTRef l case link of Info _ -> return point Link pt'@(Pt l') -> do pt'' <- repr pt' when (pt'' /= pt') $ do -- At this point we know that @pt'@ is not the representative -- element of @point@'s equivalent class. Therefore @pt'@'s -- link must be of the form @Link r@. We write this same -- value into @point@'s link reference and thereby perform -- path compression. link' <- readSTRef l' writeSTRef l link' return pt'' -- | Return the reference to the point's equivalence class's -- descriptor. descrRef :: Point s a -> ST s (STRef s (Info a)) descrRef point@(Pt link_ref) = do link <- readSTRef link_ref case link of Info info -> return info Link (Pt link'_ref) -> do link' <- readSTRef link'_ref case link' of Info info -> return info _ -> descrRef =<< repr point -- | /O(1)/. Return the descriptor associated with argument point's -- equivalence class. descriptor :: Point s a -> ST s a descriptor point = do descr <$> (readSTRef =<< descrRef point) -- | /O(1)/. Replace the descriptor of the point's equivalence class -- with the second argument. setDescriptor :: Point s a -> a -> ST s () setDescriptor point new_descr = do r <- descrRef point modifySTRef r $ \i -> i { descr = new_descr } modifyDescriptor :: Point s a -> (a -> a) -> ST s () modifyDescriptor point f = do r <- descrRef point modifySTRef r $ \i -> i { descr = f (descr i) } -- | /O(1)/. Join the equivalence classes of the points (which must be -- distinct). The resulting equivalence class will get the descriptor -- of the second argument. union :: Point s a -> Point s a -> ST s () union p1 p2 = union' p1 p2 (\_ d2 -> return d2) -- | Like 'union', but sets the descriptor returned from the callback. -- -- The intention is to keep the descriptor of the second argument to -- the callback, but the callback might adjust the information of the -- descriptor or perform side effects. union' :: Point s a -> Point s a -> (a -> a -> ST s a) -> ST s () union' p1 p2 update = do point1@(Pt link_ref1) <- repr p1 point2@(Pt link_ref2) <- repr p2 -- The precondition ensures that we don't create cyclic structures. when (point1 /= point2) $ do Info info_ref1 <- readSTRef link_ref1 Info info_ref2 <- readSTRef link_ref2 MkInfo w1 d1 <- readSTRef info_ref1 -- d1 is discarded MkInfo w2 d2 <- readSTRef info_ref2 d2' <- update d1 d2 -- Make the smaller tree a a subtree of the bigger one. The idea -- is this: We increase the path length of one set by one. -- Assuming all elements are accessed equally often, this means -- the penalty is smaller if we do it for the smaller set of the -- two. if w1 >= w2 then do writeSTRef link_ref2 (Link point1) writeSTRef info_ref1 (MkInfo (w1 + w2) d2') else do writeSTRef link_ref1 (Link point2) writeSTRef info_ref2 (MkInfo (w1 + w2) d2') -- | /O(1)/. Return @True@ if both points belong to the same -- | equivalence class. equivalent :: Point s a -> Point s a -> ST s Bool equivalent p1 p2 = (==) <$> repr p1 <*> repr p2 -- | /O(1)/. Returns @True@ for all but one element of an equivalence -- class. That is, if @ps = [p1, .., pn]@ are all in the same -- equivalence class, then the following assertion holds. -- -- > do rs <- mapM redundant ps -- > assert (length (filter (==False) rs) == 1) -- -- It is unspecified for which element function returns @False@, so be -- really careful when using this. redundant :: Point s a -> ST s Bool redundant (Pt link_r) = do link <- readSTRef link_r case link of Info _ -> return False Link _ -> return True