{-# LANGUAGE CPP #-} {-# LANGUAGE ConstrainedClassMethods #-} {-# LANGUAGE ConstraintKinds #-} {-# LANGUAGE DataKinds #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE Trustworthy #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE TypeOperators #-} {-# LANGUAGE UndecidableInstances #-} {-# OPTIONS_GHC -fno-warn-unticked-promoted-constructors #-} -- | Reimagined approach for 'Foldable' type hierarchy. Forbids usages -- of 'length' function and similar over 'Maybe' and other potentially unsafe -- data types. It was proposed to use @-XTypeApplication@ for such cases. -- But this approach is not robust enough because programmers are human and can -- easily forget to do this. For discussion see this topic: -- module Container.Class ( -- * Foldable-like classes and methods Element , ToList(..) , Container(..) , NontrivialContainer , WrappedList (..) , sum , product , mapM_ , forM_ , traverse_ , for_ , sequenceA_ , sequence_ , asum -- * Others , One(..) ) where import Control.Applicative (Alternative (..)) import Control.Monad.Identity (Identity) import Data.Coerce (Coercible, coerce) import Data.Foldable (Foldable) import Data.Hashable (Hashable) import Data.Maybe (fromMaybe) import Data.Monoid (All (..), Any (..), First (..)) import Data.Word (Word8) import Prelude hiding (Foldable (..), all, and, any, head, mapM_, notElem, or, sequence_) #if __GLASGOW_HASKELL__ >= 800 import GHC.Err (errorWithoutStackTrace) import GHC.TypeLits (ErrorMessage (..), Symbol, TypeError) #endif #if ( __GLASGOW_HASKELL__ >= 800 ) import qualified Data.List.NonEmpty as NE #endif import qualified Data.Foldable as F import qualified Data.List as List (null) import qualified Data.Sequence as SEQ import qualified Data.ByteString as BS import qualified Data.ByteString.Lazy as BSL import qualified Data.Text as T import qualified Data.Text.Lazy as TL import qualified Data.HashMap.Strict as HM import qualified Data.HashSet as HS import qualified Data.IntMap as IM import qualified Data.IntSet as IS import qualified Data.Map as M import qualified Data.Set as S import qualified Data.Vector as V import qualified Data.Vector.Primitive as VP import qualified Data.Vector.Storable as VS import qualified Data.Vector.Unboxed as VU import Applicative (pass) ---------------------------------------------------------------------------- -- Containers (e.g. tuples aren't containers) ---------------------------------------------------------------------------- -- | Type of element for some container. Implemented as a type family because -- some containers are monomorphic over element type (like 'T.Text', 'IS.IntSet', etc.) -- so we can't implement nice interface using old higher-kinded types approach. type family Element t type instance Element (f a) = a type instance Element T.Text = Char type instance Element TL.Text = Char type instance Element BS.ByteString = Word8 type instance Element BSL.ByteString = Word8 type instance Element IS.IntSet = Int -- | Type class for data types that can be converted to List. -- Fully compatible with 'Foldable'. -- Contains very small and safe subset of 'Foldable' functions. -- -- You can define 'Tolist' by just defining 'toList' function. -- But the following law should be met: -- -- @'null' ≡ 'List.null' . 'toList'@ -- class ToList t where {-# MINIMAL toList #-} -- | Convert container to list of elements. -- -- >>> toList (Just True) -- [True] -- >>> toList @Text "aba" -- "aba" -- >>> :t toList @Text "aba" -- toList @Text "aba" :: [Char] toList :: t -> [Element t] -- | Checks whether container is empty. -- -- >>> null @Text "" -- True -- >>> null @Text "aba" -- False null :: t -> Bool null = List.null . toList -- | This instance makes 'ToList' compatible and overlappable by 'Foldable'. instance {-# OVERLAPPABLE #-} Foldable f => ToList (f a) where toList = F.toList {-# INLINE toList #-} null = F.null {-# INLINE null #-} instance ToList T.Text where toList = T.unpack {-# INLINE toList #-} null = T.null {-# INLINE null #-} instance ToList TL.Text where toList = TL.unpack {-# INLINE toList #-} null = TL.null {-# INLINE null #-} instance ToList BS.ByteString where toList = BS.unpack {-# INLINE toList #-} null = BS.null {-# INLINE null #-} instance ToList BSL.ByteString where toList = BSL.unpack {-# INLINE toList #-} null = BSL.null {-# INLINE null #-} instance ToList IS.IntSet where toList = IS.toList {-# INLINE toList #-} null = IS.null {-# INLINE null #-} ---------------------------------------------------------------------------- -- Additional operations that don't make much sense for e.g. Maybe ---------------------------------------------------------------------------- -- | A class for 'ToList's that aren't trivial like 'Maybe' (e.g. can hold -- more than one value) class ToList t => Container t where foldMap :: Monoid m => (Element t -> m) -> t -> m foldMap f = foldr (mappend . f) mempty {-# INLINE foldMap #-} fold :: Monoid (Element t) => t -> Element t fold = foldMap id foldr :: (Element t -> b -> b) -> b -> t -> b foldr' :: (Element t -> b -> b) -> b -> t -> b foldr' f z0 xs = foldl f' id xs z0 where f' k x z = k $! f x z foldl :: (b -> Element t -> b) -> b -> t -> b foldl' :: (b -> Element t -> b) -> b -> t -> b foldr1 :: (Element t -> Element t -> Element t) -> t -> Element t foldr1 f xs = #if __GLASGOW_HASKELL__ >= 800 fromMaybe (errorWithoutStackTrace "foldr1: empty structure") (foldr mf Nothing xs) #else fromMaybe (error "foldr1: empty structure") (foldr mf Nothing xs) #endif where mf x m = Just (case m of Nothing -> x Just y -> f x y) foldl1 :: (Element t -> Element t -> Element t) -> t -> Element t foldl1 f xs = #if __GLASGOW_HASKELL__ >= 800 fromMaybe (errorWithoutStackTrace "foldl1: empty structure") (foldl mf Nothing xs) #else fromMaybe (error "foldl1: empty structure") (foldl mf Nothing xs) #endif where mf m y = Just (case m of Nothing -> y Just x -> f x y) length :: t -> Int elem :: Eq (Element t) => Element t -> t -> Bool notElem :: Eq (Element t) => Element t -> t -> Bool notElem x = not . elem x maximum :: Ord (Element t) => t -> Element t minimum :: Ord (Element t) => t -> Element t all :: (Element t -> Bool) -> t -> Bool all p = getAll #. foldMap (All #. p) any :: (Element t -> Bool) -> t -> Bool any p = getAny #. foldMap (Any #. p) and :: (Element t ~ Bool) => t -> Bool and = getAll #. foldMap All or :: (Element t ~ Bool) => t -> Bool or = getAny #. foldMap Any find :: (Element t -> Bool) -> t -> Maybe (Element t) find p = getFirst . foldMap (\ x -> First (if p x then Just x else Nothing)) head :: t -> Maybe (Element t) head = foldr (\x _ -> Just x) Nothing {-# INLINE head #-} -- | To save backwards compatibility with previous naming. type NontrivialContainer t = Container t instance {-# OVERLAPPABLE #-} Foldable f => Container (f a) where foldMap = F.foldMap {-# INLINE foldMap #-} fold = F.fold {-# INLINE fold #-} foldr = F.foldr {-# INLINE foldr #-} foldr' = F.foldr' {-# INLINE foldr' #-} foldl = F.foldl {-# INLINE foldl #-} foldl' = F.foldl' {-# INLINE foldl' #-} foldr1 = F.foldr1 {-# INLINE foldr1 #-} foldl1 = F.foldl1 {-# INLINE foldl1 #-} length = F.length {-# INLINE length #-} elem = F.elem {-# INLINE elem #-} notElem = F.notElem {-# INLINE notElem #-} maximum = F.maximum {-# INLINE maximum #-} minimum = F.minimum {-# INLINE minimum #-} all = F.all {-# INLINE all #-} any = F.any {-# INLINE any #-} and = F.and {-# INLINE and #-} or = F.or {-# INLINE or #-} find = F.find {-# INLINE find #-} instance Container T.Text where foldr = T.foldr {-# INLINE foldr #-} foldl = T.foldl {-# INLINE foldl #-} foldl' = T.foldl' {-# INLINE foldl' #-} foldr1 = T.foldr1 {-# INLINE foldr1 #-} foldl1 = T.foldl1 {-# INLINE foldl1 #-} length = T.length {-# INLINE length #-} elem c = T.isInfixOf (T.singleton c) -- there are rewrite rules for this {-# INLINE elem #-} maximum = T.maximum {-# INLINE maximum #-} minimum = T.minimum {-# INLINE minimum #-} all = T.all {-# INLINE all #-} any = T.any {-# INLINE any #-} find = T.find {-# INLINE find #-} head = fmap fst . T.uncons {-# INLINE head #-} instance Container TL.Text where foldr = TL.foldr {-# INLINE foldr #-} foldl = TL.foldl {-# INLINE foldl #-} foldl' = TL.foldl' {-# INLINE foldl' #-} foldr1 = TL.foldr1 {-# INLINE foldr1 #-} foldl1 = TL.foldl1 {-# INLINE foldl1 #-} length = fromIntegral . TL.length {-# INLINE length #-} -- will be okay thanks to rewrite rules elem c s = TL.isInfixOf (TL.singleton c) s {-# INLINE elem #-} maximum = TL.maximum {-# INLINE maximum #-} minimum = TL.minimum {-# INLINE minimum #-} all = TL.all {-# INLINE all #-} any = TL.any {-# INLINE any #-} find = TL.find {-# INLINE find #-} head = fmap fst . TL.uncons {-# INLINE head #-} instance Container BS.ByteString where foldr = BS.foldr {-# INLINE foldr #-} foldl = BS.foldl {-# INLINE foldl #-} foldl' = BS.foldl' {-# INLINE foldl' #-} foldr1 = BS.foldr1 {-# INLINE foldr1 #-} foldl1 = BS.foldl1 {-# INLINE foldl1 #-} length = BS.length {-# INLINE length #-} elem = BS.elem {-# INLINE elem #-} notElem = BS.notElem {-# INLINE notElem #-} maximum = BS.maximum {-# INLINE maximum #-} minimum = BS.minimum {-# INLINE minimum #-} all = BS.all {-# INLINE all #-} any = BS.any {-# INLINE any #-} find = BS.find {-# INLINE find #-} head = fmap fst . BS.uncons {-# INLINE head #-} instance Container BSL.ByteString where foldr = BSL.foldr {-# INLINE foldr #-} foldl = BSL.foldl {-# INLINE foldl #-} foldl' = BSL.foldl' {-# INLINE foldl' #-} foldr1 = BSL.foldr1 {-# INLINE foldr1 #-} foldl1 = BSL.foldl1 {-# INLINE foldl1 #-} length = fromIntegral . BSL.length {-# INLINE length #-} elem = BSL.elem {-# INLINE elem #-} notElem = BSL.notElem {-# INLINE notElem #-} maximum = BSL.maximum {-# INLINE maximum #-} minimum = BSL.minimum {-# INLINE minimum #-} all = BSL.all {-# INLINE all #-} any = BSL.any {-# INLINE any #-} find = BSL.find {-# INLINE find #-} head = fmap fst . BSL.uncons {-# INLINE head #-} instance Container IS.IntSet where foldr = IS.foldr {-# INLINE foldr #-} foldl = IS.foldl {-# INLINE foldl #-} foldl' = IS.foldl' {-# INLINE foldl' #-} length = IS.size {-# INLINE length #-} elem = IS.member {-# INLINE elem #-} maximum = IS.findMax {-# INLINE maximum #-} minimum = IS.findMin {-# INLINE minimum #-} head = fmap fst . IS.minView {-# INLINE head #-} ---------------------------------------------------------------------------- -- Wrapped List ---------------------------------------------------------------------------- -- | This can be useful if you want to use 'Container' methods for your data type -- but you don't want to implement all methods of this type class for that. newtype WrappedList f a = WrappedList (f a) type instance Element (WrappedList f a) = a instance ToList (f a) => ToList (WrappedList f a) where toList (WrappedList l) = toList l {-# INLINE toList #-} null (WrappedList l) = null l {-# INLINE null #-} instance ToList (f a) => Container (WrappedList f a) where foldMap f = foldMap f . toList {-# INLINE foldMap #-} fold = fold . toList {-# INLINE fold #-} foldr f z = foldr f z . toList {-# INLINE foldr #-} foldr' f z = foldr' f z . toList {-# INLINE foldr' #-} foldl f z = foldl f z . toList {-# INLINE foldl #-} foldl' f z = foldl' f z . toList {-# INLINE foldl' #-} foldr1 f = foldr1 f . toList {-# INLINE foldr1 #-} foldl1 f = foldl1 f . toList {-# INLINE foldl1 #-} length = length . toList {-# INLINE length #-} elem x = elem x . toList {-# INLINE elem #-} notElem x = notElem x . toList {-# INLINE notElem #-} maximum = maximum . toList {-# INLINE maximum #-} minimum = minimum . toList {-# INLINE minimum #-} all p = all p . toList {-# INLINE all #-} any p = any p . toList {-# INLINE any #-} and = and . toList {-# INLINE and #-} or = or . toList {-# INLINE or #-} find p = find p . toList {-# INLINE find #-} head = head . toList {-# INLINE head #-} ---------------------------------------------------------------------------- -- Derivative functions ---------------------------------------------------------------------------- -- | Stricter version of 'Prelude.sum'. -- -- >>> sum [1..10] -- 55 -- >>> sum (Just 3) -- :43:1: error: -- • Do not use 'Foldable' methods on Maybe -- • In the expression: sum (Just 3) -- In an equation for ‘it’: it = sum (Just 3) sum :: (Container t, Num (Element t)) => t -> Element t sum = foldl' (+) 0 -- | Stricter version of 'Prelude.product'. -- -- >>> product [1..10] -- 3628800 -- >>> product (Right 3) -- :45:1: error: -- • Do not use 'Foldable' methods on Either -- • In the expression: product (Right 3) -- In an equation for ‘it’: it = product (Right 3) product :: (Container t, Num (Element t)) => t -> Element t product = foldl' (*) 1 -- | Constrained to 'Container' version of 'Data.Foldable.traverse_'. traverse_ :: (Container t, Applicative f) => (Element t -> f b) -> t -> f () traverse_ f = foldr ((*>) . f) pass -- | Constrained to 'Container' version of 'Data.Foldable.for_'. for_ :: (Container t, Applicative f) => t -> (Element t -> f b) -> f () for_ = flip traverse_ {-# INLINE for_ #-} -- | Constrained to 'Container' version of 'Data.Foldable.mapM_'. mapM_ :: (Container t, Monad m) => (Element t -> m b) -> t -> m () mapM_ f= foldr ((>>) . f) pass -- | Constrained to 'Container' version of 'Data.Foldable.forM_'. forM_ :: (Container t, Monad m) => t -> (Element t -> m b) -> m () forM_ = flip mapM_ {-# INLINE forM_ #-} -- | Constrained to 'Container' version of 'Data.Foldable.sequenceA_'. sequenceA_ :: (Container t, Applicative f, Element t ~ f a) => t -> f () sequenceA_ = foldr (*>) pass -- | Constrained to 'Container' version of 'Data.Foldable.sequence_'. sequence_ :: (Container t, Monad m, Element t ~ m a) => t -> m () sequence_ = foldr (>>) pass -- | Constrained to 'Container' version of 'Data.Foldable.asum'. asum :: (Container t, Alternative f, Element t ~ f a) => t -> f a asum = foldr (<|>) empty {-# INLINE asum #-} ---------------------------------------------------------------------------- -- Disallowed instances ---------------------------------------------------------------------------- #if __GLASGOW_HASKELL__ >= 800 type family DisallowInstance (z :: Symbol) :: ErrorMessage where DisallowInstance z = Text "Do not use 'Foldable' methods on " :<>: Text z :$$: Text "Suggestions:" :$$: Text " Instead of" :$$: Text " for_ :: (Foldable t, Applicative f) => t a -> (a -> f b) -> f ()" :$$: Text " use" :$$: Text " whenJust :: Applicative f => Maybe a -> (a -> f ()) -> f ()" :$$: Text " whenRight :: Applicative f => Either l r -> (r -> f ()) -> f ()" :$$: Text "" :$$: Text " Instead of" :$$: Text " fold :: (Foldable t, Monoid m) => t m -> m" :$$: Text " use" :$$: Text " maybeToMonoid :: Monoid m => Maybe m -> m" :$$: Text "" #endif #define DISALLOW_TO_LIST_8(t, z) \ instance TypeError (DisallowInstance z) => \ ToList (t) where { \ toList = undefined; \ null = undefined; } \ #define DISALLOW_CONTAINER_8(t, z) \ instance TypeError (DisallowInstance z) => \ Container (t) where { \ foldr = undefined; \ foldl = undefined; \ foldl' = undefined; \ length = undefined; \ elem = undefined; \ maximum = undefined; \ minimum = undefined; } \ #define DISALLOW_TO_LIST_7(t) \ instance ForbiddenFoldable (t) => ToList (t) where { \ toList = undefined; \ null = undefined; } \ #define DISALLOW_CONTAINER_7(t) \ instance ForbiddenFoldable (t) => Container (t) where { \ foldr = undefined; \ foldl = undefined; \ foldl' = undefined; \ length = undefined; \ elem = undefined; \ maximum = undefined; \ minimum = undefined; } \ #if __GLASGOW_HASKELL__ >= 800 DISALLOW_TO_LIST_8((a, b),"tuples") DISALLOW_CONTAINER_8((a, b),"tuples") DISALLOW_CONTAINER_8(Maybe a,"Maybe") DISALLOW_CONTAINER_8(Identity a,"Identity") DISALLOW_CONTAINER_8(Either a b,"Either") #else class ForbiddenFoldable a DISALLOW_TO_LIST_7((a, b)) DISALLOW_CONTAINER_7((a, b)) DISALLOW_CONTAINER_7(Maybe a) DISALLOW_CONTAINER_7(Identity a) DISALLOW_CONTAINER_7(Either a b) #endif ---------------------------------------------------------------------------- -- One ---------------------------------------------------------------------------- -- | Type class for types that can be created from one element. @singleton@ -- is lone name for this function. Also constructions of different type differ: -- @:[]@ for lists, two arguments for Maps. Also some data types are monomorphic. -- -- >>> one True :: [Bool] -- [True] -- >>> one 'a' :: Text -- "a" -- >>> one (3, "hello") :: HashMap Int String -- fromList [(3,"hello")] class One x where type OneItem x -- | Create a list, map, 'Text', etc from a single element. one :: OneItem x -> x -- Lists instance One [a] where type OneItem [a] = a one = (:[]) {-# INLINE one #-} #if ( __GLASGOW_HASKELL__ >= 800 ) instance One (NE.NonEmpty a) where type OneItem (NE.NonEmpty a) = a one = (NE.:|[]) {-# INLINE one #-} #endif instance One (SEQ.Seq a) where type OneItem (SEQ.Seq a) = a one = (SEQ.empty SEQ.|>) {-# INLINE one #-} -- Monomorphic sequences instance One T.Text where type OneItem T.Text = Char one = T.singleton {-# INLINE one #-} instance One TL.Text where type OneItem TL.Text = Char one = TL.singleton {-# INLINE one #-} instance One BS.ByteString where type OneItem BS.ByteString = Word8 one = BS.singleton {-# INLINE one #-} instance One BSL.ByteString where type OneItem BSL.ByteString = Word8 one = BSL.singleton {-# INLINE one #-} -- Maps instance One (M.Map k v) where type OneItem (M.Map k v) = (k, v) one = uncurry M.singleton {-# INLINE one #-} instance Hashable k => One (HM.HashMap k v) where type OneItem (HM.HashMap k v) = (k, v) one = uncurry HM.singleton {-# INLINE one #-} instance One (IM.IntMap v) where type OneItem (IM.IntMap v) = (Int, v) one = uncurry IM.singleton {-# INLINE one #-} -- Sets instance One (S.Set v) where type OneItem (S.Set v) = v one = S.singleton {-# INLINE one #-} instance Hashable v => One (HS.HashSet v) where type OneItem (HS.HashSet v) = v one = HS.singleton {-# INLINE one #-} instance One IS.IntSet where type OneItem IS.IntSet = Int one = IS.singleton {-# INLINE one #-} -- Vectors instance One (V.Vector a) where type OneItem (V.Vector a) = a one = V.singleton {-# INLINE one #-} instance VU.Unbox a => One (VU.Vector a) where type OneItem (VU.Vector a) = a one = VU.singleton {-# INLINE one #-} instance VP.Prim a => One (VP.Vector a) where type OneItem (VP.Vector a) = a one = VP.singleton {-# INLINE one #-} instance VS.Storable a => One (VS.Vector a) where type OneItem (VS.Vector a) = a one = VS.singleton {-# INLINE one #-} ---------------------------------------------------------------------------- -- Utils ---------------------------------------------------------------------------- (#.) :: Coercible b c => (b -> c) -> (a -> b) -> (a -> c) (#.) _f = coerce {-# INLINE (#.) #-}