{-# LANGUAGE Rank2Types, GADTs #-} {-# LANGUAGE ScopedTypeVariables #-} module PrintVisitCode where {-# LINE 2 "./src-ag/DeclBlocks.ag" #-} import Code (Decl,Expr) {-# LINE 9 "dist/build/PrintVisitCode.hs" #-} {-# LINE 2 "./src-ag/Patterns.ag" #-} -- Patterns.ag imports import UU.Scanner.Position(Pos) import CommonTypes (ConstructorIdent,Identifier) {-# LINE 16 "dist/build/PrintVisitCode.hs" #-} {-# LINE 2 "./src-ag/CodeSyntax.ag" #-} import Patterns import CommonTypes import Data.Map(Map) import Data.Set(Set) {-# LINE 24 "dist/build/PrintVisitCode.hs" #-} {-# LINE 10 "./src-ag/PrintVisitCode.ag" #-} import CommonTypes import SequentialTypes import Options import CodeSyntax import ErrorMessages import GrammarInfo import DeclBlocks import Pretty import qualified Data.Map as Map import Data.Map(Map) import qualified Data.Set as Set import Data.Set(Set) import qualified Data.Sequence as Seq import Data.Sequence(Seq) import UU.Scanner.Position import Data.List(partition,intersperse,intersect,(\\)) import Data.Maybe(fromJust,isJust) {-# LINE 47 "dist/build/PrintVisitCode.hs" #-} import Control.Monad.Identity (Identity) import qualified Control.Monad.Identity {-# LINE 32 "./src-ag/PrintVisitCode.ag" #-} type PP_Docs = [PP_Doc] ppMultiSeqH :: [PP_Doc] -> PP_Doc -> PP_Doc ppMultiSeqH = ppMultiSeq' (>#<) ppMultiSeqV :: [PP_Doc] -> PP_Doc -> PP_Doc ppMultiSeqV = ppMultiSeq' (>-<) ppMultiSeq' :: (PP_Doc -> PP_Doc -> PP_Doc) -> [PP_Doc] -> PP_Doc -> PP_Doc ppMultiSeq' next strictArgs expr = foldr (\v r -> (v >#< "`seq`") `next` pp_parens r) expr strictArgs {-# LINE 63 "dist/build/PrintVisitCode.hs" #-} -- CGrammar ---------------------------------------------------- -- wrapper data Inh_CGrammar = Inh_CGrammar { options_Inh_CGrammar :: (Options) } data Syn_CGrammar = Syn_CGrammar { output_Syn_CGrammar :: (PP_Docs) } {-# INLINABLE wrap_CGrammar #-} wrap_CGrammar :: T_CGrammar -> Inh_CGrammar -> (Syn_CGrammar ) wrap_CGrammar (T_CGrammar act) (Inh_CGrammar _lhsIoptions) = Control.Monad.Identity.runIdentity ( do sem <- act let arg = T_CGrammar_vIn1 _lhsIoptions (T_CGrammar_vOut1 _lhsOoutput) <- return (inv_CGrammar_s2 sem arg) return (Syn_CGrammar _lhsOoutput) ) -- cata {-# INLINE sem_CGrammar #-} sem_CGrammar :: CGrammar -> T_CGrammar sem_CGrammar ( CGrammar typeSyns_ derivings_ wrappers_ nonts_ pragmas_ paramMap_ contextMap_ quantMap_ aroundsMap_ mergeMap_ multivisit_ ) = sem_CGrammar_CGrammar typeSyns_ derivings_ wrappers_ ( sem_CNonterminals nonts_ ) pragmas_ paramMap_ contextMap_ quantMap_ aroundsMap_ mergeMap_ multivisit_ -- semantic domain newtype T_CGrammar = T_CGrammar { attach_T_CGrammar :: Identity (T_CGrammar_s2 ) } newtype T_CGrammar_s2 = C_CGrammar_s2 { inv_CGrammar_s2 :: (T_CGrammar_v1 ) } data T_CGrammar_s3 = C_CGrammar_s3 type T_CGrammar_v1 = (T_CGrammar_vIn1 ) -> (T_CGrammar_vOut1 ) data T_CGrammar_vIn1 = T_CGrammar_vIn1 (Options) data T_CGrammar_vOut1 = T_CGrammar_vOut1 (PP_Docs) {-# NOINLINE sem_CGrammar_CGrammar #-} sem_CGrammar_CGrammar :: (TypeSyns) -> (Derivings) -> (Set NontermIdent) -> T_CNonterminals -> (PragmaMap) -> (ParamMap) -> (ContextMap) -> (QuantMap) -> (Map NontermIdent (Map ConstructorIdent (Set Identifier))) -> (Map NontermIdent (Map ConstructorIdent (Map Identifier (Identifier,[Identifier])))) -> (Bool) -> T_CGrammar sem_CGrammar_CGrammar _ _ _ arg_nonts_ _ _ _ _ _ _ _ = T_CGrammar (return st2) where {-# NOINLINE st2 #-} st2 = let v1 :: T_CGrammar_v1 v1 = \ (T_CGrammar_vIn1 _lhsIoptions) -> ( let _nontsX11 = Control.Monad.Identity.runIdentity (attach_T_CNonterminals (arg_nonts_)) (T_CNonterminals_vOut10 ) = inv_CNonterminals_s11 _nontsX11 (T_CNonterminals_vIn10 ) _lhsOoutput :: PP_Docs _lhsOoutput = rule0 () __result_ = T_CGrammar_vOut1 _lhsOoutput in __result_ ) in C_CGrammar_s2 v1 {-# INLINE rule0 #-} {-# LINE 53 "./src-ag/PrintVisitCode.ag" #-} rule0 = \ (_ :: ()) -> {-# LINE 53 "./src-ag/PrintVisitCode.ag" #-} [] {-# LINE 113 "dist/build/PrintVisitCode.hs"#-} -- CInterface -------------------------------------------------- -- wrapper data Inh_CInterface = Inh_CInterface { } data Syn_CInterface = Syn_CInterface { } {-# INLINABLE wrap_CInterface #-} wrap_CInterface :: T_CInterface -> Inh_CInterface -> (Syn_CInterface ) wrap_CInterface (T_CInterface act) (Inh_CInterface ) = Control.Monad.Identity.runIdentity ( do sem <- act let arg = T_CInterface_vIn4 (T_CInterface_vOut4 ) <- return (inv_CInterface_s5 sem arg) return (Syn_CInterface ) ) -- cata {-# INLINE sem_CInterface #-} sem_CInterface :: CInterface -> T_CInterface sem_CInterface ( CInterface seg_ ) = sem_CInterface_CInterface ( sem_CSegments seg_ ) -- semantic domain newtype T_CInterface = T_CInterface { attach_T_CInterface :: Identity (T_CInterface_s5 ) } newtype T_CInterface_s5 = C_CInterface_s5 { inv_CInterface_s5 :: (T_CInterface_v4 ) } data T_CInterface_s6 = C_CInterface_s6 type T_CInterface_v4 = (T_CInterface_vIn4 ) -> (T_CInterface_vOut4 ) data T_CInterface_vIn4 = T_CInterface_vIn4 data T_CInterface_vOut4 = T_CInterface_vOut4 {-# NOINLINE sem_CInterface_CInterface #-} sem_CInterface_CInterface :: T_CSegments -> T_CInterface sem_CInterface_CInterface arg_seg_ = T_CInterface (return st5) where {-# NOINLINE st5 #-} st5 = let v4 :: T_CInterface_v4 v4 = \ (T_CInterface_vIn4 ) -> ( let _segX26 = Control.Monad.Identity.runIdentity (attach_T_CSegments (arg_seg_)) (T_CSegments_vOut25 ) = inv_CSegments_s26 _segX26 (T_CSegments_vIn25 ) __result_ = T_CInterface_vOut4 in __result_ ) in C_CInterface_s5 v4 -- CNonterminal ------------------------------------------------ -- wrapper data Inh_CNonterminal = Inh_CNonterminal { } data Syn_CNonterminal = Syn_CNonterminal { } {-# INLINABLE wrap_CNonterminal #-} wrap_CNonterminal :: T_CNonterminal -> Inh_CNonterminal -> (Syn_CNonterminal ) wrap_CNonterminal (T_CNonterminal act) (Inh_CNonterminal ) = Control.Monad.Identity.runIdentity ( do sem <- act let arg = T_CNonterminal_vIn7 (T_CNonterminal_vOut7 ) <- return (inv_CNonterminal_s8 sem arg) return (Syn_CNonterminal ) ) -- cata {-# INLINE sem_CNonterminal #-} sem_CNonterminal :: CNonterminal -> T_CNonterminal sem_CNonterminal ( CNonterminal nt_ params_ inh_ syn_ prods_ inter_ ) = sem_CNonterminal_CNonterminal nt_ params_ inh_ syn_ ( sem_CProductions prods_ ) ( sem_CInterface inter_ ) -- semantic domain newtype T_CNonterminal = T_CNonterminal { attach_T_CNonterminal :: Identity (T_CNonterminal_s8 ) } newtype T_CNonterminal_s8 = C_CNonterminal_s8 { inv_CNonterminal_s8 :: (T_CNonterminal_v7 ) } data T_CNonterminal_s9 = C_CNonterminal_s9 type T_CNonterminal_v7 = (T_CNonterminal_vIn7 ) -> (T_CNonterminal_vOut7 ) data T_CNonterminal_vIn7 = T_CNonterminal_vIn7 data T_CNonterminal_vOut7 = T_CNonterminal_vOut7 {-# NOINLINE sem_CNonterminal_CNonterminal #-} sem_CNonterminal_CNonterminal :: (NontermIdent) -> ([Identifier]) -> (Attributes) -> (Attributes) -> T_CProductions -> T_CInterface -> T_CNonterminal sem_CNonterminal_CNonterminal _ _ _ _ arg_prods_ arg_inter_ = T_CNonterminal (return st8) where {-# NOINLINE st8 #-} st8 = let v7 :: T_CNonterminal_v7 v7 = \ (T_CNonterminal_vIn7 ) -> ( let _prodsX17 = Control.Monad.Identity.runIdentity (attach_T_CProductions (arg_prods_)) _interX5 = Control.Monad.Identity.runIdentity (attach_T_CInterface (arg_inter_)) (T_CProductions_vOut16 ) = inv_CProductions_s17 _prodsX17 (T_CProductions_vIn16 ) (T_CInterface_vOut4 ) = inv_CInterface_s5 _interX5 (T_CInterface_vIn4 ) __result_ = T_CNonterminal_vOut7 in __result_ ) in C_CNonterminal_s8 v7 -- CNonterminals ----------------------------------------------- -- wrapper data Inh_CNonterminals = Inh_CNonterminals { } data Syn_CNonterminals = Syn_CNonterminals { } {-# INLINABLE wrap_CNonterminals #-} wrap_CNonterminals :: T_CNonterminals -> Inh_CNonterminals -> (Syn_CNonterminals ) wrap_CNonterminals (T_CNonterminals act) (Inh_CNonterminals ) = Control.Monad.Identity.runIdentity ( do sem <- act let arg = T_CNonterminals_vIn10 (T_CNonterminals_vOut10 ) <- return (inv_CNonterminals_s11 sem arg) return (Syn_CNonterminals ) ) -- cata {-# NOINLINE sem_CNonterminals #-} sem_CNonterminals :: CNonterminals -> T_CNonterminals sem_CNonterminals list = Prelude.foldr sem_CNonterminals_Cons sem_CNonterminals_Nil (Prelude.map sem_CNonterminal list) -- semantic domain newtype T_CNonterminals = T_CNonterminals { attach_T_CNonterminals :: Identity (T_CNonterminals_s11 ) } newtype T_CNonterminals_s11 = C_CNonterminals_s11 { inv_CNonterminals_s11 :: (T_CNonterminals_v10 ) } data T_CNonterminals_s12 = C_CNonterminals_s12 type T_CNonterminals_v10 = (T_CNonterminals_vIn10 ) -> (T_CNonterminals_vOut10 ) data T_CNonterminals_vIn10 = T_CNonterminals_vIn10 data T_CNonterminals_vOut10 = T_CNonterminals_vOut10 {-# NOINLINE sem_CNonterminals_Cons #-} sem_CNonterminals_Cons :: T_CNonterminal -> T_CNonterminals -> T_CNonterminals sem_CNonterminals_Cons arg_hd_ arg_tl_ = T_CNonterminals (return st11) where {-# NOINLINE st11 #-} st11 = let v10 :: T_CNonterminals_v10 v10 = \ (T_CNonterminals_vIn10 ) -> ( let _hdX8 = Control.Monad.Identity.runIdentity (attach_T_CNonterminal (arg_hd_)) _tlX11 = Control.Monad.Identity.runIdentity (attach_T_CNonterminals (arg_tl_)) (T_CNonterminal_vOut7 ) = inv_CNonterminal_s8 _hdX8 (T_CNonterminal_vIn7 ) (T_CNonterminals_vOut10 ) = inv_CNonterminals_s11 _tlX11 (T_CNonterminals_vIn10 ) __result_ = T_CNonterminals_vOut10 in __result_ ) in C_CNonterminals_s11 v10 {-# NOINLINE sem_CNonterminals_Nil #-} sem_CNonterminals_Nil :: T_CNonterminals sem_CNonterminals_Nil = T_CNonterminals (return st11) where {-# NOINLINE st11 #-} st11 = let v10 :: T_CNonterminals_v10 v10 = \ (T_CNonterminals_vIn10 ) -> ( let __result_ = T_CNonterminals_vOut10 in __result_ ) in C_CNonterminals_s11 v10 -- CProduction ------------------------------------------------- -- wrapper data Inh_CProduction = Inh_CProduction { } data Syn_CProduction = Syn_CProduction { } {-# INLINABLE wrap_CProduction #-} wrap_CProduction :: T_CProduction -> Inh_CProduction -> (Syn_CProduction ) wrap_CProduction (T_CProduction act) (Inh_CProduction ) = Control.Monad.Identity.runIdentity ( do sem <- act let arg = T_CProduction_vIn13 (T_CProduction_vOut13 ) <- return (inv_CProduction_s14 sem arg) return (Syn_CProduction ) ) -- cata {-# INLINE sem_CProduction #-} sem_CProduction :: CProduction -> T_CProduction sem_CProduction ( CProduction con_ visits_ children_ terminals_ ) = sem_CProduction_CProduction con_ ( sem_CVisits visits_ ) children_ terminals_ -- semantic domain newtype T_CProduction = T_CProduction { attach_T_CProduction :: Identity (T_CProduction_s14 ) } newtype T_CProduction_s14 = C_CProduction_s14 { inv_CProduction_s14 :: (T_CProduction_v13 ) } data T_CProduction_s15 = C_CProduction_s15 type T_CProduction_v13 = (T_CProduction_vIn13 ) -> (T_CProduction_vOut13 ) data T_CProduction_vIn13 = T_CProduction_vIn13 data T_CProduction_vOut13 = T_CProduction_vOut13 {-# NOINLINE sem_CProduction_CProduction #-} sem_CProduction_CProduction :: (ConstructorIdent) -> T_CVisits -> ([(Identifier,Type,ChildKind)]) -> ([Identifier]) -> T_CProduction sem_CProduction_CProduction _ arg_visits_ _ _ = T_CProduction (return st14) where {-# NOINLINE st14 #-} st14 = let v13 :: T_CProduction_v13 v13 = \ (T_CProduction_vIn13 ) -> ( let _visitsX32 = Control.Monad.Identity.runIdentity (attach_T_CVisits (arg_visits_)) (T_CVisits_vOut31 ) = inv_CVisits_s32 _visitsX32 (T_CVisits_vIn31 ) __result_ = T_CProduction_vOut13 in __result_ ) in C_CProduction_s14 v13 -- CProductions ------------------------------------------------ -- wrapper data Inh_CProductions = Inh_CProductions { } data Syn_CProductions = Syn_CProductions { } {-# INLINABLE wrap_CProductions #-} wrap_CProductions :: T_CProductions -> Inh_CProductions -> (Syn_CProductions ) wrap_CProductions (T_CProductions act) (Inh_CProductions ) = Control.Monad.Identity.runIdentity ( do sem <- act let arg = T_CProductions_vIn16 (T_CProductions_vOut16 ) <- return (inv_CProductions_s17 sem arg) return (Syn_CProductions ) ) -- cata {-# NOINLINE sem_CProductions #-} sem_CProductions :: CProductions -> T_CProductions sem_CProductions list = Prelude.foldr sem_CProductions_Cons sem_CProductions_Nil (Prelude.map sem_CProduction list) -- semantic domain newtype T_CProductions = T_CProductions { attach_T_CProductions :: Identity (T_CProductions_s17 ) } newtype T_CProductions_s17 = C_CProductions_s17 { inv_CProductions_s17 :: (T_CProductions_v16 ) } data T_CProductions_s18 = C_CProductions_s18 type T_CProductions_v16 = (T_CProductions_vIn16 ) -> (T_CProductions_vOut16 ) data T_CProductions_vIn16 = T_CProductions_vIn16 data T_CProductions_vOut16 = T_CProductions_vOut16 {-# NOINLINE sem_CProductions_Cons #-} sem_CProductions_Cons :: T_CProduction -> T_CProductions -> T_CProductions sem_CProductions_Cons arg_hd_ arg_tl_ = T_CProductions (return st17) where {-# NOINLINE st17 #-} st17 = let v16 :: T_CProductions_v16 v16 = \ (T_CProductions_vIn16 ) -> ( let _hdX14 = Control.Monad.Identity.runIdentity (attach_T_CProduction (arg_hd_)) _tlX17 = Control.Monad.Identity.runIdentity (attach_T_CProductions (arg_tl_)) (T_CProduction_vOut13 ) = inv_CProduction_s14 _hdX14 (T_CProduction_vIn13 ) (T_CProductions_vOut16 ) = inv_CProductions_s17 _tlX17 (T_CProductions_vIn16 ) __result_ = T_CProductions_vOut16 in __result_ ) in C_CProductions_s17 v16 {-# NOINLINE sem_CProductions_Nil #-} sem_CProductions_Nil :: T_CProductions sem_CProductions_Nil = T_CProductions (return st17) where {-# NOINLINE st17 #-} st17 = let v16 :: T_CProductions_v16 v16 = \ (T_CProductions_vIn16 ) -> ( let __result_ = T_CProductions_vOut16 in __result_ ) in C_CProductions_s17 v16 -- CRule ------------------------------------------------------- -- wrapper data Inh_CRule = Inh_CRule { } data Syn_CRule = Syn_CRule { } {-# INLINABLE wrap_CRule #-} wrap_CRule :: T_CRule -> Inh_CRule -> (Syn_CRule ) wrap_CRule (T_CRule act) (Inh_CRule ) = Control.Monad.Identity.runIdentity ( do sem <- act let arg = T_CRule_vIn19 (T_CRule_vOut19 ) <- return (inv_CRule_s20 sem arg) return (Syn_CRule ) ) -- cata {-# NOINLINE sem_CRule #-} sem_CRule :: CRule -> T_CRule sem_CRule ( CRule name_ isIn_ hasCode_ nt_ con_ field_ childnt_ tp_ pattern_ rhs_ defines_ owrt_ origin_ uses_ explicit_ mbNamed_ ) = sem_CRule_CRule name_ isIn_ hasCode_ nt_ con_ field_ childnt_ tp_ ( sem_Pattern pattern_ ) rhs_ defines_ owrt_ origin_ uses_ explicit_ mbNamed_ sem_CRule ( CChildVisit name_ nt_ nr_ inh_ syn_ isLast_ ) = sem_CRule_CChildVisit name_ nt_ nr_ inh_ syn_ isLast_ -- semantic domain newtype T_CRule = T_CRule { attach_T_CRule :: Identity (T_CRule_s20 ) } newtype T_CRule_s20 = C_CRule_s20 { inv_CRule_s20 :: (T_CRule_v19 ) } data T_CRule_s21 = C_CRule_s21 type T_CRule_v19 = (T_CRule_vIn19 ) -> (T_CRule_vOut19 ) data T_CRule_vIn19 = T_CRule_vIn19 data T_CRule_vOut19 = T_CRule_vOut19 {-# NOINLINE sem_CRule_CRule #-} sem_CRule_CRule :: (Identifier) -> (Bool) -> (Bool) -> (NontermIdent) -> (ConstructorIdent) -> (Identifier) -> (Maybe NontermIdent) -> (Maybe Type) -> T_Pattern -> ([String]) -> (Map Int (Identifier,Identifier,Maybe Type)) -> (Bool) -> (String) -> (Set (Identifier, Identifier)) -> (Bool) -> (Maybe Identifier) -> T_CRule sem_CRule_CRule _ _ _ _ _ _ _ _ arg_pattern_ _ _ _ _ _ _ _ = T_CRule (return st20) where {-# NOINLINE st20 #-} st20 = let v19 :: T_CRule_v19 v19 = \ (T_CRule_vIn19 ) -> ( let _patternX41 = Control.Monad.Identity.runIdentity (attach_T_Pattern (arg_pattern_)) (T_Pattern_vOut40 _patternIcopy) = inv_Pattern_s41 _patternX41 (T_Pattern_vIn40 ) __result_ = T_CRule_vOut19 in __result_ ) in C_CRule_s20 v19 {-# NOINLINE sem_CRule_CChildVisit #-} sem_CRule_CChildVisit :: (Identifier) -> (NontermIdent) -> (Int) -> (Attributes) -> (Attributes) -> (Bool) -> T_CRule sem_CRule_CChildVisit _ _ _ _ _ _ = T_CRule (return st20) where {-# NOINLINE st20 #-} st20 = let v19 :: T_CRule_v19 v19 = \ (T_CRule_vIn19 ) -> ( let __result_ = T_CRule_vOut19 in __result_ ) in C_CRule_s20 v19 -- CSegment ---------------------------------------------------- -- wrapper data Inh_CSegment = Inh_CSegment { } data Syn_CSegment = Syn_CSegment { } {-# INLINABLE wrap_CSegment #-} wrap_CSegment :: T_CSegment -> Inh_CSegment -> (Syn_CSegment ) wrap_CSegment (T_CSegment act) (Inh_CSegment ) = Control.Monad.Identity.runIdentity ( do sem <- act let arg = T_CSegment_vIn22 (T_CSegment_vOut22 ) <- return (inv_CSegment_s23 sem arg) return (Syn_CSegment ) ) -- cata {-# INLINE sem_CSegment #-} sem_CSegment :: CSegment -> T_CSegment sem_CSegment ( CSegment inh_ syn_ ) = sem_CSegment_CSegment inh_ syn_ -- semantic domain newtype T_CSegment = T_CSegment { attach_T_CSegment :: Identity (T_CSegment_s23 ) } newtype T_CSegment_s23 = C_CSegment_s23 { inv_CSegment_s23 :: (T_CSegment_v22 ) } data T_CSegment_s24 = C_CSegment_s24 type T_CSegment_v22 = (T_CSegment_vIn22 ) -> (T_CSegment_vOut22 ) data T_CSegment_vIn22 = T_CSegment_vIn22 data T_CSegment_vOut22 = T_CSegment_vOut22 {-# NOINLINE sem_CSegment_CSegment #-} sem_CSegment_CSegment :: (Attributes) -> (Attributes) -> T_CSegment sem_CSegment_CSegment _ _ = T_CSegment (return st23) where {-# NOINLINE st23 #-} st23 = let v22 :: T_CSegment_v22 v22 = \ (T_CSegment_vIn22 ) -> ( let __result_ = T_CSegment_vOut22 in __result_ ) in C_CSegment_s23 v22 -- CSegments --------------------------------------------------- -- wrapper data Inh_CSegments = Inh_CSegments { } data Syn_CSegments = Syn_CSegments { } {-# INLINABLE wrap_CSegments #-} wrap_CSegments :: T_CSegments -> Inh_CSegments -> (Syn_CSegments ) wrap_CSegments (T_CSegments act) (Inh_CSegments ) = Control.Monad.Identity.runIdentity ( do sem <- act let arg = T_CSegments_vIn25 (T_CSegments_vOut25 ) <- return (inv_CSegments_s26 sem arg) return (Syn_CSegments ) ) -- cata {-# NOINLINE sem_CSegments #-} sem_CSegments :: CSegments -> T_CSegments sem_CSegments list = Prelude.foldr sem_CSegments_Cons sem_CSegments_Nil (Prelude.map sem_CSegment list) -- semantic domain newtype T_CSegments = T_CSegments { attach_T_CSegments :: Identity (T_CSegments_s26 ) } newtype T_CSegments_s26 = C_CSegments_s26 { inv_CSegments_s26 :: (T_CSegments_v25 ) } data T_CSegments_s27 = C_CSegments_s27 type T_CSegments_v25 = (T_CSegments_vIn25 ) -> (T_CSegments_vOut25 ) data T_CSegments_vIn25 = T_CSegments_vIn25 data T_CSegments_vOut25 = T_CSegments_vOut25 {-# NOINLINE sem_CSegments_Cons #-} sem_CSegments_Cons :: T_CSegment -> T_CSegments -> T_CSegments sem_CSegments_Cons arg_hd_ arg_tl_ = T_CSegments (return st26) where {-# NOINLINE st26 #-} st26 = let v25 :: T_CSegments_v25 v25 = \ (T_CSegments_vIn25 ) -> ( let _hdX23 = Control.Monad.Identity.runIdentity (attach_T_CSegment (arg_hd_)) _tlX26 = Control.Monad.Identity.runIdentity (attach_T_CSegments (arg_tl_)) (T_CSegment_vOut22 ) = inv_CSegment_s23 _hdX23 (T_CSegment_vIn22 ) (T_CSegments_vOut25 ) = inv_CSegments_s26 _tlX26 (T_CSegments_vIn25 ) __result_ = T_CSegments_vOut25 in __result_ ) in C_CSegments_s26 v25 {-# NOINLINE sem_CSegments_Nil #-} sem_CSegments_Nil :: T_CSegments sem_CSegments_Nil = T_CSegments (return st26) where {-# NOINLINE st26 #-} st26 = let v25 :: T_CSegments_v25 v25 = \ (T_CSegments_vIn25 ) -> ( let __result_ = T_CSegments_vOut25 in __result_ ) in C_CSegments_s26 v25 -- CVisit ------------------------------------------------------ -- wrapper data Inh_CVisit = Inh_CVisit { } data Syn_CVisit = Syn_CVisit { } {-# INLINABLE wrap_CVisit #-} wrap_CVisit :: T_CVisit -> Inh_CVisit -> (Syn_CVisit ) wrap_CVisit (T_CVisit act) (Inh_CVisit ) = Control.Monad.Identity.runIdentity ( do sem <- act let arg = T_CVisit_vIn28 (T_CVisit_vOut28 ) <- return (inv_CVisit_s29 sem arg) return (Syn_CVisit ) ) -- cata {-# INLINE sem_CVisit #-} sem_CVisit :: CVisit -> T_CVisit sem_CVisit ( CVisit inh_ syn_ vss_ intra_ ordered_ ) = sem_CVisit_CVisit inh_ syn_ ( sem_Sequence vss_ ) ( sem_Sequence intra_ ) ordered_ -- semantic domain newtype T_CVisit = T_CVisit { attach_T_CVisit :: Identity (T_CVisit_s29 ) } newtype T_CVisit_s29 = C_CVisit_s29 { inv_CVisit_s29 :: (T_CVisit_v28 ) } data T_CVisit_s30 = C_CVisit_s30 type T_CVisit_v28 = (T_CVisit_vIn28 ) -> (T_CVisit_vOut28 ) data T_CVisit_vIn28 = T_CVisit_vIn28 data T_CVisit_vOut28 = T_CVisit_vOut28 {-# NOINLINE sem_CVisit_CVisit #-} sem_CVisit_CVisit :: (Attributes) -> (Attributes) -> T_Sequence -> T_Sequence -> (Bool) -> T_CVisit sem_CVisit_CVisit _ _ arg_vss_ arg_intra_ _ = T_CVisit (return st29) where {-# NOINLINE st29 #-} st29 = let v28 :: T_CVisit_v28 v28 = \ (T_CVisit_vIn28 ) -> ( let _vssX47 = Control.Monad.Identity.runIdentity (attach_T_Sequence (arg_vss_)) _intraX47 = Control.Monad.Identity.runIdentity (attach_T_Sequence (arg_intra_)) (T_Sequence_vOut46 ) = inv_Sequence_s47 _vssX47 (T_Sequence_vIn46 ) (T_Sequence_vOut46 ) = inv_Sequence_s47 _intraX47 (T_Sequence_vIn46 ) __result_ = T_CVisit_vOut28 in __result_ ) in C_CVisit_s29 v28 -- CVisits ----------------------------------------------------- -- wrapper data Inh_CVisits = Inh_CVisits { } data Syn_CVisits = Syn_CVisits { } {-# INLINABLE wrap_CVisits #-} wrap_CVisits :: T_CVisits -> Inh_CVisits -> (Syn_CVisits ) wrap_CVisits (T_CVisits act) (Inh_CVisits ) = Control.Monad.Identity.runIdentity ( do sem <- act let arg = T_CVisits_vIn31 (T_CVisits_vOut31 ) <- return (inv_CVisits_s32 sem arg) return (Syn_CVisits ) ) -- cata {-# NOINLINE sem_CVisits #-} sem_CVisits :: CVisits -> T_CVisits sem_CVisits list = Prelude.foldr sem_CVisits_Cons sem_CVisits_Nil (Prelude.map sem_CVisit list) -- semantic domain newtype T_CVisits = T_CVisits { attach_T_CVisits :: Identity (T_CVisits_s32 ) } newtype T_CVisits_s32 = C_CVisits_s32 { inv_CVisits_s32 :: (T_CVisits_v31 ) } data T_CVisits_s33 = C_CVisits_s33 type T_CVisits_v31 = (T_CVisits_vIn31 ) -> (T_CVisits_vOut31 ) data T_CVisits_vIn31 = T_CVisits_vIn31 data T_CVisits_vOut31 = T_CVisits_vOut31 {-# NOINLINE sem_CVisits_Cons #-} sem_CVisits_Cons :: T_CVisit -> T_CVisits -> T_CVisits sem_CVisits_Cons arg_hd_ arg_tl_ = T_CVisits (return st32) where {-# NOINLINE st32 #-} st32 = let v31 :: T_CVisits_v31 v31 = \ (T_CVisits_vIn31 ) -> ( let _hdX29 = Control.Monad.Identity.runIdentity (attach_T_CVisit (arg_hd_)) _tlX32 = Control.Monad.Identity.runIdentity (attach_T_CVisits (arg_tl_)) (T_CVisit_vOut28 ) = inv_CVisit_s29 _hdX29 (T_CVisit_vIn28 ) (T_CVisits_vOut31 ) = inv_CVisits_s32 _tlX32 (T_CVisits_vIn31 ) __result_ = T_CVisits_vOut31 in __result_ ) in C_CVisits_s32 v31 {-# NOINLINE sem_CVisits_Nil #-} sem_CVisits_Nil :: T_CVisits sem_CVisits_Nil = T_CVisits (return st32) where {-# NOINLINE st32 #-} st32 = let v31 :: T_CVisits_v31 v31 = \ (T_CVisits_vIn31 ) -> ( let __result_ = T_CVisits_vOut31 in __result_ ) in C_CVisits_s32 v31 -- DeclBlocks -------------------------------------------------- -- wrapper data Inh_DeclBlocks = Inh_DeclBlocks { } data Syn_DeclBlocks = Syn_DeclBlocks { } {-# INLINABLE wrap_DeclBlocks #-} wrap_DeclBlocks :: T_DeclBlocks -> Inh_DeclBlocks -> (Syn_DeclBlocks ) wrap_DeclBlocks (T_DeclBlocks act) (Inh_DeclBlocks ) = Control.Monad.Identity.runIdentity ( do sem <- act let arg = T_DeclBlocks_vIn34 (T_DeclBlocks_vOut34 ) <- return (inv_DeclBlocks_s35 sem arg) return (Syn_DeclBlocks ) ) -- cata {-# NOINLINE sem_DeclBlocks #-} sem_DeclBlocks :: DeclBlocks -> T_DeclBlocks sem_DeclBlocks ( DeclBlock defs_ visit_ next_ ) = sem_DeclBlocks_DeclBlock defs_ visit_ ( sem_DeclBlocks next_ ) sem_DeclBlocks ( DeclTerminator defs_ result_ ) = sem_DeclBlocks_DeclTerminator defs_ result_ -- semantic domain newtype T_DeclBlocks = T_DeclBlocks { attach_T_DeclBlocks :: Identity (T_DeclBlocks_s35 ) } newtype T_DeclBlocks_s35 = C_DeclBlocks_s35 { inv_DeclBlocks_s35 :: (T_DeclBlocks_v34 ) } data T_DeclBlocks_s36 = C_DeclBlocks_s36 type T_DeclBlocks_v34 = (T_DeclBlocks_vIn34 ) -> (T_DeclBlocks_vOut34 ) data T_DeclBlocks_vIn34 = T_DeclBlocks_vIn34 data T_DeclBlocks_vOut34 = T_DeclBlocks_vOut34 {-# NOINLINE sem_DeclBlocks_DeclBlock #-} sem_DeclBlocks_DeclBlock :: ([Decl]) -> (Decl) -> T_DeclBlocks -> T_DeclBlocks sem_DeclBlocks_DeclBlock _ _ arg_next_ = T_DeclBlocks (return st35) where {-# NOINLINE st35 #-} st35 = let v34 :: T_DeclBlocks_v34 v34 = \ (T_DeclBlocks_vIn34 ) -> ( let _nextX35 = Control.Monad.Identity.runIdentity (attach_T_DeclBlocks (arg_next_)) (T_DeclBlocks_vOut34 ) = inv_DeclBlocks_s35 _nextX35 (T_DeclBlocks_vIn34 ) __result_ = T_DeclBlocks_vOut34 in __result_ ) in C_DeclBlocks_s35 v34 {-# NOINLINE sem_DeclBlocks_DeclTerminator #-} sem_DeclBlocks_DeclTerminator :: ([Decl]) -> (Expr) -> T_DeclBlocks sem_DeclBlocks_DeclTerminator _ _ = T_DeclBlocks (return st35) where {-# NOINLINE st35 #-} st35 = let v34 :: T_DeclBlocks_v34 v34 = \ (T_DeclBlocks_vIn34 ) -> ( let __result_ = T_DeclBlocks_vOut34 in __result_ ) in C_DeclBlocks_s35 v34 -- DeclBlocksRoot ---------------------------------------------- -- wrapper data Inh_DeclBlocksRoot = Inh_DeclBlocksRoot { } data Syn_DeclBlocksRoot = Syn_DeclBlocksRoot { } {-# INLINABLE wrap_DeclBlocksRoot #-} wrap_DeclBlocksRoot :: T_DeclBlocksRoot -> Inh_DeclBlocksRoot -> (Syn_DeclBlocksRoot ) wrap_DeclBlocksRoot (T_DeclBlocksRoot act) (Inh_DeclBlocksRoot ) = Control.Monad.Identity.runIdentity ( do sem <- act let arg = T_DeclBlocksRoot_vIn37 (T_DeclBlocksRoot_vOut37 ) <- return (inv_DeclBlocksRoot_s38 sem arg) return (Syn_DeclBlocksRoot ) ) -- cata {-# INLINE sem_DeclBlocksRoot #-} sem_DeclBlocksRoot :: DeclBlocksRoot -> T_DeclBlocksRoot sem_DeclBlocksRoot ( DeclBlocksRoot blocks_ ) = sem_DeclBlocksRoot_DeclBlocksRoot ( sem_DeclBlocks blocks_ ) -- semantic domain newtype T_DeclBlocksRoot = T_DeclBlocksRoot { attach_T_DeclBlocksRoot :: Identity (T_DeclBlocksRoot_s38 ) } newtype T_DeclBlocksRoot_s38 = C_DeclBlocksRoot_s38 { inv_DeclBlocksRoot_s38 :: (T_DeclBlocksRoot_v37 ) } data T_DeclBlocksRoot_s39 = C_DeclBlocksRoot_s39 type T_DeclBlocksRoot_v37 = (T_DeclBlocksRoot_vIn37 ) -> (T_DeclBlocksRoot_vOut37 ) data T_DeclBlocksRoot_vIn37 = T_DeclBlocksRoot_vIn37 data T_DeclBlocksRoot_vOut37 = T_DeclBlocksRoot_vOut37 {-# NOINLINE sem_DeclBlocksRoot_DeclBlocksRoot #-} sem_DeclBlocksRoot_DeclBlocksRoot :: T_DeclBlocks -> T_DeclBlocksRoot sem_DeclBlocksRoot_DeclBlocksRoot arg_blocks_ = T_DeclBlocksRoot (return st38) where {-# NOINLINE st38 #-} st38 = let v37 :: T_DeclBlocksRoot_v37 v37 = \ (T_DeclBlocksRoot_vIn37 ) -> ( let _blocksX35 = Control.Monad.Identity.runIdentity (attach_T_DeclBlocks (arg_blocks_)) (T_DeclBlocks_vOut34 ) = inv_DeclBlocks_s35 _blocksX35 (T_DeclBlocks_vIn34 ) __result_ = T_DeclBlocksRoot_vOut37 in __result_ ) in C_DeclBlocksRoot_s38 v37 -- Pattern ----------------------------------------------------- -- wrapper data Inh_Pattern = Inh_Pattern { } data Syn_Pattern = Syn_Pattern { copy_Syn_Pattern :: (Pattern) } {-# INLINABLE wrap_Pattern #-} wrap_Pattern :: T_Pattern -> Inh_Pattern -> (Syn_Pattern ) wrap_Pattern (T_Pattern act) (Inh_Pattern ) = Control.Monad.Identity.runIdentity ( do sem <- act let arg = T_Pattern_vIn40 (T_Pattern_vOut40 _lhsOcopy) <- return (inv_Pattern_s41 sem arg) return (Syn_Pattern _lhsOcopy) ) -- cata {-# NOINLINE sem_Pattern #-} sem_Pattern :: Pattern -> T_Pattern sem_Pattern ( Constr name_ pats_ ) = sem_Pattern_Constr name_ ( sem_Patterns pats_ ) sem_Pattern ( Product pos_ pats_ ) = sem_Pattern_Product pos_ ( sem_Patterns pats_ ) sem_Pattern ( Alias field_ attr_ pat_ ) = sem_Pattern_Alias field_ attr_ ( sem_Pattern pat_ ) sem_Pattern ( Irrefutable pat_ ) = sem_Pattern_Irrefutable ( sem_Pattern pat_ ) sem_Pattern ( Underscore pos_ ) = sem_Pattern_Underscore pos_ -- semantic domain newtype T_Pattern = T_Pattern { attach_T_Pattern :: Identity (T_Pattern_s41 ) } newtype T_Pattern_s41 = C_Pattern_s41 { inv_Pattern_s41 :: (T_Pattern_v40 ) } data T_Pattern_s42 = C_Pattern_s42 type T_Pattern_v40 = (T_Pattern_vIn40 ) -> (T_Pattern_vOut40 ) data T_Pattern_vIn40 = T_Pattern_vIn40 data T_Pattern_vOut40 = T_Pattern_vOut40 (Pattern) {-# NOINLINE sem_Pattern_Constr #-} sem_Pattern_Constr :: (ConstructorIdent) -> T_Patterns -> T_Pattern sem_Pattern_Constr arg_name_ arg_pats_ = T_Pattern (return st41) where {-# NOINLINE st41 #-} st41 = let v40 :: T_Pattern_v40 v40 = \ (T_Pattern_vIn40 ) -> ( let _patsX44 = Control.Monad.Identity.runIdentity (attach_T_Patterns (arg_pats_)) (T_Patterns_vOut43 _patsIcopy) = inv_Patterns_s44 _patsX44 (T_Patterns_vIn43 ) _copy = rule1 _patsIcopy arg_name_ _lhsOcopy :: Pattern _lhsOcopy = rule2 _copy __result_ = T_Pattern_vOut40 _lhsOcopy in __result_ ) in C_Pattern_s41 v40 {-# INLINE rule1 #-} rule1 = \ ((_patsIcopy) :: Patterns) name_ -> Constr name_ _patsIcopy {-# INLINE rule2 #-} rule2 = \ _copy -> _copy {-# NOINLINE sem_Pattern_Product #-} sem_Pattern_Product :: (Pos) -> T_Patterns -> T_Pattern sem_Pattern_Product arg_pos_ arg_pats_ = T_Pattern (return st41) where {-# NOINLINE st41 #-} st41 = let v40 :: T_Pattern_v40 v40 = \ (T_Pattern_vIn40 ) -> ( let _patsX44 = Control.Monad.Identity.runIdentity (attach_T_Patterns (arg_pats_)) (T_Patterns_vOut43 _patsIcopy) = inv_Patterns_s44 _patsX44 (T_Patterns_vIn43 ) _copy = rule3 _patsIcopy arg_pos_ _lhsOcopy :: Pattern _lhsOcopy = rule4 _copy __result_ = T_Pattern_vOut40 _lhsOcopy in __result_ ) in C_Pattern_s41 v40 {-# INLINE rule3 #-} rule3 = \ ((_patsIcopy) :: Patterns) pos_ -> Product pos_ _patsIcopy {-# INLINE rule4 #-} rule4 = \ _copy -> _copy {-# NOINLINE sem_Pattern_Alias #-} sem_Pattern_Alias :: (Identifier) -> (Identifier) -> T_Pattern -> T_Pattern sem_Pattern_Alias arg_field_ arg_attr_ arg_pat_ = T_Pattern (return st41) where {-# NOINLINE st41 #-} st41 = let v40 :: T_Pattern_v40 v40 = \ (T_Pattern_vIn40 ) -> ( let _patX41 = Control.Monad.Identity.runIdentity (attach_T_Pattern (arg_pat_)) (T_Pattern_vOut40 _patIcopy) = inv_Pattern_s41 _patX41 (T_Pattern_vIn40 ) _copy = rule5 _patIcopy arg_attr_ arg_field_ _lhsOcopy :: Pattern _lhsOcopy = rule6 _copy __result_ = T_Pattern_vOut40 _lhsOcopy in __result_ ) in C_Pattern_s41 v40 {-# INLINE rule5 #-} rule5 = \ ((_patIcopy) :: Pattern) attr_ field_ -> Alias field_ attr_ _patIcopy {-# INLINE rule6 #-} rule6 = \ _copy -> _copy {-# NOINLINE sem_Pattern_Irrefutable #-} sem_Pattern_Irrefutable :: T_Pattern -> T_Pattern sem_Pattern_Irrefutable arg_pat_ = T_Pattern (return st41) where {-# NOINLINE st41 #-} st41 = let v40 :: T_Pattern_v40 v40 = \ (T_Pattern_vIn40 ) -> ( let _patX41 = Control.Monad.Identity.runIdentity (attach_T_Pattern (arg_pat_)) (T_Pattern_vOut40 _patIcopy) = inv_Pattern_s41 _patX41 (T_Pattern_vIn40 ) _copy = rule7 _patIcopy _lhsOcopy :: Pattern _lhsOcopy = rule8 _copy __result_ = T_Pattern_vOut40 _lhsOcopy in __result_ ) in C_Pattern_s41 v40 {-# INLINE rule7 #-} rule7 = \ ((_patIcopy) :: Pattern) -> Irrefutable _patIcopy {-# INLINE rule8 #-} rule8 = \ _copy -> _copy {-# NOINLINE sem_Pattern_Underscore #-} sem_Pattern_Underscore :: (Pos) -> T_Pattern sem_Pattern_Underscore arg_pos_ = T_Pattern (return st41) where {-# NOINLINE st41 #-} st41 = let v40 :: T_Pattern_v40 v40 = \ (T_Pattern_vIn40 ) -> ( let _copy = rule9 arg_pos_ _lhsOcopy :: Pattern _lhsOcopy = rule10 _copy __result_ = T_Pattern_vOut40 _lhsOcopy in __result_ ) in C_Pattern_s41 v40 {-# INLINE rule9 #-} rule9 = \ pos_ -> Underscore pos_ {-# INLINE rule10 #-} rule10 = \ _copy -> _copy -- Patterns ---------------------------------------------------- -- wrapper data Inh_Patterns = Inh_Patterns { } data Syn_Patterns = Syn_Patterns { copy_Syn_Patterns :: (Patterns) } {-# INLINABLE wrap_Patterns #-} wrap_Patterns :: T_Patterns -> Inh_Patterns -> (Syn_Patterns ) wrap_Patterns (T_Patterns act) (Inh_Patterns ) = Control.Monad.Identity.runIdentity ( do sem <- act let arg = T_Patterns_vIn43 (T_Patterns_vOut43 _lhsOcopy) <- return (inv_Patterns_s44 sem arg) return (Syn_Patterns _lhsOcopy) ) -- cata {-# NOINLINE sem_Patterns #-} sem_Patterns :: Patterns -> T_Patterns sem_Patterns list = Prelude.foldr sem_Patterns_Cons sem_Patterns_Nil (Prelude.map sem_Pattern list) -- semantic domain newtype T_Patterns = T_Patterns { attach_T_Patterns :: Identity (T_Patterns_s44 ) } newtype T_Patterns_s44 = C_Patterns_s44 { inv_Patterns_s44 :: (T_Patterns_v43 ) } data T_Patterns_s45 = C_Patterns_s45 type T_Patterns_v43 = (T_Patterns_vIn43 ) -> (T_Patterns_vOut43 ) data T_Patterns_vIn43 = T_Patterns_vIn43 data T_Patterns_vOut43 = T_Patterns_vOut43 (Patterns) {-# NOINLINE sem_Patterns_Cons #-} sem_Patterns_Cons :: T_Pattern -> T_Patterns -> T_Patterns sem_Patterns_Cons arg_hd_ arg_tl_ = T_Patterns (return st44) where {-# NOINLINE st44 #-} st44 = let v43 :: T_Patterns_v43 v43 = \ (T_Patterns_vIn43 ) -> ( let _hdX41 = Control.Monad.Identity.runIdentity (attach_T_Pattern (arg_hd_)) _tlX44 = Control.Monad.Identity.runIdentity (attach_T_Patterns (arg_tl_)) (T_Pattern_vOut40 _hdIcopy) = inv_Pattern_s41 _hdX41 (T_Pattern_vIn40 ) (T_Patterns_vOut43 _tlIcopy) = inv_Patterns_s44 _tlX44 (T_Patterns_vIn43 ) _copy = rule11 _hdIcopy _tlIcopy _lhsOcopy :: Patterns _lhsOcopy = rule12 _copy __result_ = T_Patterns_vOut43 _lhsOcopy in __result_ ) in C_Patterns_s44 v43 {-# INLINE rule11 #-} rule11 = \ ((_hdIcopy) :: Pattern) ((_tlIcopy) :: Patterns) -> (:) _hdIcopy _tlIcopy {-# INLINE rule12 #-} rule12 = \ _copy -> _copy {-# NOINLINE sem_Patterns_Nil #-} sem_Patterns_Nil :: T_Patterns sem_Patterns_Nil = T_Patterns (return st44) where {-# NOINLINE st44 #-} st44 = let v43 :: T_Patterns_v43 v43 = \ (T_Patterns_vIn43 ) -> ( let _copy = rule13 () _lhsOcopy :: Patterns _lhsOcopy = rule14 _copy __result_ = T_Patterns_vOut43 _lhsOcopy in __result_ ) in C_Patterns_s44 v43 {-# INLINE rule13 #-} rule13 = \ (_ :: ()) -> [] {-# INLINE rule14 #-} rule14 = \ _copy -> _copy -- Sequence ---------------------------------------------------- -- wrapper data Inh_Sequence = Inh_Sequence { } data Syn_Sequence = Syn_Sequence { } {-# INLINABLE wrap_Sequence #-} wrap_Sequence :: T_Sequence -> Inh_Sequence -> (Syn_Sequence ) wrap_Sequence (T_Sequence act) (Inh_Sequence ) = Control.Monad.Identity.runIdentity ( do sem <- act let arg = T_Sequence_vIn46 (T_Sequence_vOut46 ) <- return (inv_Sequence_s47 sem arg) return (Syn_Sequence ) ) -- cata {-# NOINLINE sem_Sequence #-} sem_Sequence :: Sequence -> T_Sequence sem_Sequence list = Prelude.foldr sem_Sequence_Cons sem_Sequence_Nil (Prelude.map sem_CRule list) -- semantic domain newtype T_Sequence = T_Sequence { attach_T_Sequence :: Identity (T_Sequence_s47 ) } newtype T_Sequence_s47 = C_Sequence_s47 { inv_Sequence_s47 :: (T_Sequence_v46 ) } data T_Sequence_s48 = C_Sequence_s48 type T_Sequence_v46 = (T_Sequence_vIn46 ) -> (T_Sequence_vOut46 ) data T_Sequence_vIn46 = T_Sequence_vIn46 data T_Sequence_vOut46 = T_Sequence_vOut46 {-# NOINLINE sem_Sequence_Cons #-} sem_Sequence_Cons :: T_CRule -> T_Sequence -> T_Sequence sem_Sequence_Cons arg_hd_ arg_tl_ = T_Sequence (return st47) where {-# NOINLINE st47 #-} st47 = let v46 :: T_Sequence_v46 v46 = \ (T_Sequence_vIn46 ) -> ( let _hdX20 = Control.Monad.Identity.runIdentity (attach_T_CRule (arg_hd_)) _tlX47 = Control.Monad.Identity.runIdentity (attach_T_Sequence (arg_tl_)) (T_CRule_vOut19 ) = inv_CRule_s20 _hdX20 (T_CRule_vIn19 ) (T_Sequence_vOut46 ) = inv_Sequence_s47 _tlX47 (T_Sequence_vIn46 ) __result_ = T_Sequence_vOut46 in __result_ ) in C_Sequence_s47 v46 {-# NOINLINE sem_Sequence_Nil #-} sem_Sequence_Nil :: T_Sequence sem_Sequence_Nil = T_Sequence (return st47) where {-# NOINLINE st47 #-} st47 = let v46 :: T_Sequence_v46 v46 = \ (T_Sequence_vIn46 ) -> ( let __result_ = T_Sequence_vOut46 in __result_ ) in C_Sequence_s47 v46