{-# OPTIONS -cpp -fglasgow-exts #-}
--------------------------------------------------------------------------------
{-| Module      :  IntMap
Copyright   :  (c) Daan Leijen 2002

Maintainer  :  daan@cs.uu.nl
Stability   :  provisional
Portability :  portable

An efficient implementation of maps from integer keys to values.

1) The module exports some names that clash with the "Prelude" -- 'lookup', 'map', and 'filter'.
If you want to use "IntMap" unqualified, these functions should be hidden.

> import Prelude hiding (map,lookup,filter)
> import IntMap

Another solution is to use qualified names.

> import qualified IntMap
>
> ... IntMap.single "Paris" "France"

Or, if you prefer a terse coding style:

> import qualified IntMap as M
>
> ... M.single "Paris" "France"

2) The implementation is based on /big-endian patricia trees/. This data structure
performs especially well on binary operations like 'union' and 'intersection'. However,
my benchmarks show that it is also (much) faster on insertions and deletions when
compared to a generic size-balanced map implementation (see "Map" and "Data.FiniteMap").

*  Chris Okasaki and Andy Gill,  \"/Fast Mergeable Integer Maps/\",
Workshop on ML, September 1998, pages 77--86, <http://www.cse.ogi.edu/~andy/pub/finite.htm>

*  D.R. Morrison, \"/PATRICIA -- Practical Algorithm To Retrieve Information
Coded In Alphanumeric/\", Journal of the ACM, 15(4), October 1968, pages 514--534.

3) Many operations have a worst-case complexity of /O(min(n,W))/. This means that the
operation can become linear in the number of elements
with a maximum of /W/ -- the number of bits in an 'Int' (32 or 64).
-}
---------------------------------------------------------------------------------
module UU.DData.IntMap  (
-- * Map type
IntMap, Key          -- instance Eq,Show

-- * Operators
, (!), (\\)

-- * Query
, isEmpty
, size
, member
, lookup
, find
, findWithDefault

-- * Construction
, empty
, single

-- ** Insertion
, insert
, insertWith, insertWithKey, insertLookupWithKey

-- ** Delete\/Update
, delete
, update
, updateWithKey
, updateLookupWithKey

-- * Combine

-- ** Union
, union
, unionWith
, unionWithKey
, unions

-- ** Difference
, difference
, differenceWith
, differenceWithKey

-- ** Intersection
, intersection
, intersectionWith
, intersectionWithKey

-- * Traversal
-- ** Map
, map
, mapWithKey
, mapAccum
, mapAccumWithKey

-- ** Fold
, fold
, foldWithKey

-- * Conversion
, elems
, keys
, assocs

-- ** Lists
, toList
, fromList
, fromListWith
, fromListWithKey

-- ** Ordered lists
, toAscList
, fromAscList
, fromAscListWith
, fromAscListWithKey
, fromDistinctAscList

-- * Filter
, filter
, filterWithKey
, partition
, partitionWithKey

, split
, splitLookup

-- * Subset
, subset, subsetBy
, properSubset, properSubsetBy

-- * Debugging
, showTree
, showTreeWith
) where

import Prelude hiding (lookup,map,filter)
import Bits
import Int

{-
-- just for testing
import qualified Prelude
import Debug.QuickCheck
import List (nub,sort)
import qualified List
-}

{--------------------------------------------------------------------
GHC: use unboxing to get @shiftRL@ inlined.
--------------------------------------------------------------------}
import GHC.Word
import GHC.Exts ( Word(..), Int(..), shiftRL# )
#else
import Word
import GlaExts ( Word(..), Int(..), shiftRL# )
#endif

type Nat = Word

natFromInt :: Key -> Nat
natFromInt i = fromIntegral i

intFromNat :: Nat -> Key
intFromNat w = fromIntegral w

shiftRL :: Nat -> Key -> Nat
shiftRL (W# x) (I# i)
= W# (shiftRL# x i)

#elif __HUGS__
{--------------------------------------------------------------------
Hugs:
* raises errors on boundary values when using 'fromIntegral'
but not with the deprecated 'fromInt/toInt'.
* Older Hugs doesn't define 'Word'.
* Newer Hugs defines 'Word' in the Prelude but no operations.
--------------------------------------------------------------------}
import Word

type Nat = Word32   -- illegal on 64-bit platforms!

natFromInt :: Key -> Nat
natFromInt i = fromInt i

intFromNat :: Nat -> Key
intFromNat w = toInt w

shiftRL :: Nat -> Key -> Nat
shiftRL x i   = shiftR x i

#else
{--------------------------------------------------------------------
* A "Nat" is a natural machine word (an unsigned Int)
--------------------------------------------------------------------}
import Word

type Nat = Word

natFromInt :: Key -> Nat
natFromInt i = fromIntegral i

intFromNat :: Nat -> Key
intFromNat w = fromIntegral w

shiftRL :: Nat -> Key -> Nat
shiftRL w i   = shiftR w i

#endif

infixl 9 \\ --

{--------------------------------------------------------------------
Operators
--------------------------------------------------------------------}

-- | /O(min(n,W))/. See 'find'.
(!) :: IntMap a -> Key -> a
(!) m k    = find k m

-- | /O(n+m)/. See 'difference'.
(\\) :: IntMap a -> IntMap a -> IntMap a
m1 \\ m2 = difference m1 m2

{--------------------------------------------------------------------
Types
--------------------------------------------------------------------}
-- | A map of integers to values @a@.
data IntMap a = Nil
| Tip !Key a
| Bin !Prefix !Mask !(IntMap a) !(IntMap a)

type Prefix = Int
type Key    = Int

{--------------------------------------------------------------------
Query
--------------------------------------------------------------------}
-- | /O(1)/. Is the map empty?
isEmpty :: IntMap a -> Bool
isEmpty Nil   = True
isEmpty other = False

-- | /O(n)/. Number of elements in the map.
size :: IntMap a -> Int
size t
= case t of
Bin p m l r -> size l + size r
Tip k x -> 1
Nil     -> 0

-- | /O(min(n,W))/. Is the key a member of the map?
member :: Key -> IntMap a -> Bool
member k m
= case lookup k m of
Nothing -> False
Just x  -> True

-- | /O(min(n,W))/. Lookup the value of a key in the map.
lookup :: Key -> IntMap a -> Maybe a
lookup k t
= case t of
Bin p m l r
| nomatch k p m -> Nothing
| zero k m      -> lookup k l
| otherwise     -> lookup k r
Tip kx x
| (k==kx)   -> Just x
| otherwise -> Nothing
Nil -> Nothing

-- | /O(min(n,W))/. Find the value of a key. Calls @error@ when the element can not be found.
find :: Key -> IntMap a -> a
find k m
= case lookup k m of
Nothing -> error ("IntMap.find: key " ++ show k ++ " is not an element of the map")
Just x  -> x

-- | /O(min(n,W))/. The expression @(findWithDefault def k map)@ returns the value of key @k@ or returns @def@ when
-- the key is not an element of the map.
findWithDefault :: a -> Key -> IntMap a -> a
findWithDefault def k m
= case lookup k m of
Nothing -> def
Just x  -> x

{--------------------------------------------------------------------
Construction
--------------------------------------------------------------------}
-- | /O(1)/. The empty map.
empty :: IntMap a
empty
= Nil

-- | /O(1)/. A map of one element.
single :: Key -> a -> IntMap a
single k x
= Tip k x

{--------------------------------------------------------------------
Insert
'insert' is the inlined version of 'insertWith (\k x y -> x)'
--------------------------------------------------------------------}
-- | /O(min(n,W))/. Insert a new key\/value pair in the map. When the key
-- is already an element of the set, it's value is replaced by the new value,
-- ie. 'insert' is left-biased.
insert :: Key -> a -> IntMap a -> IntMap a
insert k x t
= case t of
Bin p m l r
| nomatch k p m -> join k (Tip k x) p t
| zero k m      -> Bin p m (insert k x l) r
| otherwise     -> Bin p m l (insert k x r)
Tip ky y
| k==ky         -> Tip k x
| otherwise     -> join k (Tip k x) ky t
Nil -> Tip k x

-- right-biased insertion, used by 'union'
-- | /O(min(n,W))/. Insert with a combining function.
insertWith :: (a -> a -> a) -> Key -> a -> IntMap a -> IntMap a
insertWith f k x t
= insertWithKey (\k x y -> f x y) k x t

-- | /O(min(n,W))/. Insert with a combining function.
insertWithKey :: (Key -> a -> a -> a) -> Key -> a -> IntMap a -> IntMap a
insertWithKey f k x t
= case t of
Bin p m l r
| nomatch k p m -> join k (Tip k x) p t
| zero k m      -> Bin p m (insertWithKey f k x l) r
| otherwise     -> Bin p m l (insertWithKey f k x r)
Tip ky y
| k==ky         -> Tip k (f k x y)
| otherwise     -> join k (Tip k x) ky t
Nil -> Tip k x

-- | /O(min(n,W))/. The expression (@insertLookupWithKey f k x map@) is a pair where
-- the first element is equal to (@lookup k map@) and the second element
-- equal to (@insertWithKey f k x map@).
insertLookupWithKey :: (Key -> a -> a -> a) -> Key -> a -> IntMap a -> (Maybe a, IntMap a)
insertLookupWithKey f k x t
= case t of
Bin p m l r
| nomatch k p m -> (Nothing,join k (Tip k x) p t)
| zero k m      -> let (found,l') = insertLookupWithKey f k x l in (found,Bin p m l' r)
| otherwise     -> let (found,r') = insertLookupWithKey f k x r in (found,Bin p m l r')
Tip ky y
| k==ky         -> (Just y,Tip k (f k x y))
| otherwise     -> (Nothing,join k (Tip k x) ky t)
Nil -> (Nothing,Tip k x)

{--------------------------------------------------------------------
Deletion
[delete] is the inlined version of [deleteWith (\k x -> Nothing)]
--------------------------------------------------------------------}
-- | /O(min(n,W))/. Delete a key and its value from the map. When the key is not
-- a member of the map, the original map is returned.
delete :: Key -> IntMap a -> IntMap a
delete k t
= case t of
Bin p m l r
| nomatch k p m -> t
| zero k m      -> bin p m (delete k l) r
| otherwise     -> bin p m l (delete k r)
Tip ky y
| k==ky         -> Nil
| otherwise     -> t
Nil -> Nil

-- | /O(min(n,W))/. Adjust a value at a specific key. When the key is not
-- a member of the map, the original map is returned.
adjust ::  (a -> a) -> Key -> IntMap a -> IntMap a
= adjustWithKey (\k x -> f x) k m

-- | /O(min(n,W))/. Adjust a value at a specific key. When the key is not
-- a member of the map, the original map is returned.
adjustWithKey ::  (Key -> a -> a) -> Key -> IntMap a -> IntMap a
= updateWithKey (\k x -> Just (f k x)) k m

-- | /O(min(n,W))/. The expression (@update f k map@) updates the value @x@
-- at @k@ (if it is in the map). If (@f x@) is @Nothing@, the element is
-- deleted. If it is (@Just y@), the key @k@ is bound to the new value @y@.
update ::  (a -> Maybe a) -> Key -> IntMap a -> IntMap a
update f k m
= updateWithKey (\k x -> f x) k m

-- | /O(min(n,W))/. The expression (@update f k map@) updates the value @x@
-- at @k@ (if it is in the map). If (@f k x@) is @Nothing@, the element is
-- deleted. If it is (@Just y@), the key @k@ is bound to the new value @y@.
updateWithKey ::  (Key -> a -> Maybe a) -> Key -> IntMap a -> IntMap a
updateWithKey f k t
= case t of
Bin p m l r
| nomatch k p m -> t
| zero k m      -> bin p m (updateWithKey f k l) r
| otherwise     -> bin p m l (updateWithKey f k r)
Tip ky y
| k==ky         -> case (f k y) of
Just y' -> Tip ky y'
Nothing -> Nil
| otherwise     -> t
Nil -> Nil

-- | /O(min(n,W))/. Lookup and update.
updateLookupWithKey ::  (Key -> a -> Maybe a) -> Key -> IntMap a -> (Maybe a,IntMap a)
updateLookupWithKey f k t
= case t of
Bin p m l r
| nomatch k p m -> (Nothing,t)
| zero k m      -> let (found,l') = updateLookupWithKey f k l in (found,bin p m l' r)
| otherwise     -> let (found,r') = updateLookupWithKey f k r in (found,bin p m l r')
Tip ky y
| k==ky         -> case (f k y) of
Just y' -> (Just y,Tip ky y')
Nothing -> (Just y,Nil)
| otherwise     -> (Nothing,t)
Nil -> (Nothing,Nil)

{--------------------------------------------------------------------
Union
--------------------------------------------------------------------}
-- | The union of a list of maps.
unions :: [IntMap a] -> IntMap a
unions xs
= foldlStrict union empty xs

-- | /O(n+m)/. The (left-biased) union of two sets.
union :: IntMap a -> IntMap a -> IntMap a
union t1@(Bin p1 m1 l1 r1) t2@(Bin p2 m2 l2 r2)
| shorter m1 m2  = union1
| shorter m2 m1  = union2
| p1 == p2       = Bin p1 m1 (union l1 l2) (union r1 r2)
| otherwise      = join p1 t1 p2 t2
where
union1  | nomatch p2 p1 m1  = join p1 t1 p2 t2
| zero p2 m1        = Bin p1 m1 (union l1 t2) r1
| otherwise         = Bin p1 m1 l1 (union r1 t2)

union2  | nomatch p1 p2 m2  = join p1 t1 p2 t2
| zero p1 m2        = Bin p2 m2 (union t1 l2) r2
| otherwise         = Bin p2 m2 l2 (union t1 r2)

union (Tip k x) t = insert k x t
union t (Tip k x) = insertWith (\x y -> y) k x t  -- right bias
union Nil t       = t
union t Nil       = t

-- | /O(n+m)/. The union with a combining function.
unionWith :: (a -> a -> a) -> IntMap a -> IntMap a -> IntMap a
unionWith f m1 m2
= unionWithKey (\k x y -> f x y) m1 m2

-- | /O(n+m)/. The union with a combining function.
unionWithKey :: (Key -> a -> a -> a) -> IntMap a -> IntMap a -> IntMap a
unionWithKey f t1@(Bin p1 m1 l1 r1) t2@(Bin p2 m2 l2 r2)
| shorter m1 m2  = union1
| shorter m2 m1  = union2
| p1 == p2       = Bin p1 m1 (unionWithKey f l1 l2) (unionWithKey f r1 r2)
| otherwise      = join p1 t1 p2 t2
where
union1  | nomatch p2 p1 m1  = join p1 t1 p2 t2
| zero p2 m1        = Bin p1 m1 (unionWithKey f l1 t2) r1
| otherwise         = Bin p1 m1 l1 (unionWithKey f r1 t2)

union2  | nomatch p1 p2 m2  = join p1 t1 p2 t2
| zero p1 m2        = Bin p2 m2 (unionWithKey f t1 l2) r2
| otherwise         = Bin p2 m2 l2 (unionWithKey f t1 r2)

unionWithKey f (Tip k x) t = insertWithKey f k x t
unionWithKey f t (Tip k x) = insertWithKey (\k x y -> f k y x) k x t  -- right bias
unionWithKey f Nil t  = t
unionWithKey f t Nil  = t

{--------------------------------------------------------------------
Difference
--------------------------------------------------------------------}
-- | /O(n+m)/. Difference between two maps (based on keys).
difference :: IntMap a -> IntMap a -> IntMap a
difference t1@(Bin p1 m1 l1 r1) t2@(Bin p2 m2 l2 r2)
| shorter m1 m2  = difference1
| shorter m2 m1  = difference2
| p1 == p2       = bin p1 m1 (difference l1 l2) (difference r1 r2)
| otherwise      = t1
where
difference1 | nomatch p2 p1 m1  = t1
| zero p2 m1        = bin p1 m1 (difference l1 t2) r1
| otherwise         = bin p1 m1 l1 (difference r1 t2)

difference2 | nomatch p1 p2 m2  = t1
| zero p1 m2        = difference t1 l2
| otherwise         = difference t1 r2

difference t1@(Tip k x) t2
| member k t2  = Nil
| otherwise    = t1

difference Nil t       = Nil
difference t (Tip k x) = delete k t
difference t Nil       = t

-- | /O(n+m)/. Difference with a combining function.
differenceWith :: (a -> a -> Maybe a) -> IntMap a -> IntMap a -> IntMap a
differenceWith f m1 m2
= differenceWithKey (\k x y -> f x y) m1 m2

-- | /O(n+m)/. Difference with a combining function. When two equal keys are
-- encountered, the combining function is applied to the key and both values.
-- If it returns @Nothing@, the element is discarded (proper set difference). If
-- it returns (@Just y@), the element is updated with a new value @y@.
differenceWithKey :: (Key -> a -> a -> Maybe a) -> IntMap a -> IntMap a -> IntMap a
differenceWithKey f t1@(Bin p1 m1 l1 r1) t2@(Bin p2 m2 l2 r2)
| shorter m1 m2  = difference1
| shorter m2 m1  = difference2
| p1 == p2       = bin p1 m1 (differenceWithKey f l1 l2) (differenceWithKey f r1 r2)
| otherwise      = t1
where
difference1 | nomatch p2 p1 m1  = t1
| zero p2 m1        = bin p1 m1 (differenceWithKey f l1 t2) r1
| otherwise         = bin p1 m1 l1 (differenceWithKey f r1 t2)

difference2 | nomatch p1 p2 m2  = t1
| zero p1 m2        = differenceWithKey f t1 l2
| otherwise         = differenceWithKey f t1 r2

differenceWithKey f t1@(Tip k x) t2
= case lookup k t2 of
Just y  -> case f k x y of
Just y' -> Tip k y'
Nothing -> Nil
Nothing -> t1

differenceWithKey f Nil t       = Nil
differenceWithKey f t (Tip k y) = updateWithKey (\k x -> f k x y) k t
differenceWithKey f t Nil       = t

{--------------------------------------------------------------------
Intersection
--------------------------------------------------------------------}
-- | /O(n+m)/. The (left-biased) intersection of two maps (based on keys).
intersection :: IntMap a -> IntMap a -> IntMap a
intersection t1@(Bin p1 m1 l1 r1) t2@(Bin p2 m2 l2 r2)
| shorter m1 m2  = intersection1
| shorter m2 m1  = intersection2
| p1 == p2       = bin p1 m1 (intersection l1 l2) (intersection r1 r2)
| otherwise      = Nil
where
intersection1 | nomatch p2 p1 m1  = Nil
| zero p2 m1        = intersection l1 t2
| otherwise         = intersection r1 t2

intersection2 | nomatch p1 p2 m2  = Nil
| zero p1 m2        = intersection t1 l2
| otherwise         = intersection t1 r2

intersection t1@(Tip k x) t2
| member k t2  = t1
| otherwise    = Nil
intersection t (Tip k x)
= case lookup k t of
Just y  -> Tip k y
Nothing -> Nil
intersection Nil t = Nil
intersection t Nil = Nil

-- | /O(n+m)/. The intersection with a combining function.
intersectionWith :: (a -> a -> a) -> IntMap a -> IntMap a -> IntMap a
intersectionWith f m1 m2
= intersectionWithKey (\k x y -> f x y) m1 m2

-- | /O(n+m)/. The intersection with a combining function.
intersectionWithKey :: (Key -> a -> a -> a) -> IntMap a -> IntMap a -> IntMap a
intersectionWithKey f t1@(Bin p1 m1 l1 r1) t2@(Bin p2 m2 l2 r2)
| shorter m1 m2  = intersection1
| shorter m2 m1  = intersection2
| p1 == p2       = bin p1 m1 (intersectionWithKey f l1 l2) (intersectionWithKey f r1 r2)
| otherwise      = Nil
where
intersection1 | nomatch p2 p1 m1  = Nil
| zero p2 m1        = intersectionWithKey f l1 t2
| otherwise         = intersectionWithKey f r1 t2

intersection2 | nomatch p1 p2 m2  = Nil
| zero p1 m2        = intersectionWithKey f t1 l2
| otherwise         = intersectionWithKey f t1 r2

intersectionWithKey f t1@(Tip k x) t2
= case lookup k t2 of
Just y  -> Tip k (f k x y)
Nothing -> Nil
intersectionWithKey f t1 (Tip k y)
= case lookup k t1 of
Just x  -> Tip k (f k x y)
Nothing -> Nil
intersectionWithKey f Nil t = Nil
intersectionWithKey f t Nil = Nil

{--------------------------------------------------------------------
Subset
--------------------------------------------------------------------}
-- | /O(n+m)/. Is this a proper subset? (ie. a subset but not equal).
-- Defined as (@properSubset = properSubsetBy (==)@).
properSubset :: Eq a => IntMap a -> IntMap a -> Bool
properSubset m1 m2
= properSubsetBy (==) m1 m2

{- | /O(n+m)/. Is this a proper subset? (ie. a subset but not equal).
The expression (@properSubsetBy f m1 m2@) returns @True@ when
@m1@ and @m2@ are not equal,
all keys in @m1@ are in @m2@, and when @f@ returns @True@ when
applied to their respective values. For example, the following
expressions are all @True@.

> properSubsetBy (==) (fromList [(1,1)]) (fromList [(1,1),(2,2)])
> properSubsetBy (<=) (fromList [(1,1)]) (fromList [(1,1),(2,2)])

But the following are all @False@:

> properSubsetBy (==) (fromList [(1,1),(2,2)]) (fromList [(1,1),(2,2)])
> properSubsetBy (==) (fromList [(1,1),(2,2)]) (fromList [(1,1)])
> properSubsetBy (<)  (fromList [(1,1)])       (fromList [(1,1),(2,2)])
-}
properSubsetBy :: (a -> a -> Bool) -> IntMap a -> IntMap a -> Bool
properSubsetBy pred t1 t2
= case subsetCmp pred t1 t2 of
LT -> True
ge -> False

subsetCmp pred t1@(Bin p1 m1 l1 r1) t2@(Bin p2 m2 l2 r2)
| shorter m1 m2  = GT
| shorter m2 m1  = subsetCmpLt
| p1 == p2       = subsetCmpEq
| otherwise      = GT  -- disjoint
where
subsetCmpLt | nomatch p1 p2 m2  = GT
| zero p1 m2        = subsetCmp pred t1 l2
| otherwise         = subsetCmp pred t1 r2
subsetCmpEq = case (subsetCmp pred l1 l2, subsetCmp pred r1 r2) of
(GT,_ ) -> GT
(_ ,GT) -> GT
(EQ,EQ) -> EQ
other   -> LT

subsetCmp pred (Bin p m l r) t  = GT
subsetCmp pred (Tip kx x) (Tip ky y)
| (kx == ky) && pred x y = EQ
| otherwise              = GT  -- disjoint
subsetCmp pred (Tip k x) t
= case lookup k t of
Just y  | pred x y -> LT
other   -> GT -- disjoint
subsetCmp pred Nil Nil = EQ
subsetCmp pred Nil t   = LT

-- | /O(n+m)/. Is this a subset? Defined as (@subset = subsetBy (==)@).
subset :: Eq a => IntMap a -> IntMap a -> Bool
subset m1 m2
= subsetBy (==) m1 m2

{- | /O(n+m)/.
The expression (@subsetBy f m1 m2@) returns @True@ if
all keys in @m1@ are in @m2@, and when @f@ returns @True@ when
applied to their respective values. For example, the following
expressions are all @True@.

> subsetBy (==) (fromList [(1,1)]) (fromList [(1,1),(2,2)])
> subsetBy (<=) (fromList [(1,1)]) (fromList [(1,1),(2,2)])
> subsetBy (==) (fromList [(1,1),(2,2)]) (fromList [(1,1),(2,2)])

But the following are all @False@:

> subsetBy (==) (fromList [(1,2)]) (fromList [(1,1),(2,2)])
> subsetBy (<) (fromList [(1,1)]) (fromList [(1,1),(2,2)])
> subsetBy (==) (fromList [(1,1),(2,2)]) (fromList [(1,1)])
-}

subsetBy :: (a -> a -> Bool) -> IntMap a -> IntMap a -> Bool
subsetBy pred t1@(Bin p1 m1 l1 r1) t2@(Bin p2 m2 l2 r2)
| shorter m1 m2  = False
| shorter m2 m1  = match p1 p2 m2 && (if zero p1 m2 then subsetBy pred t1 l2
else subsetBy pred t1 r2)
| otherwise      = (p1==p2) && subsetBy pred l1 l2 && subsetBy pred r1 r2
subsetBy pred (Bin p m l r) t  = False
subsetBy pred (Tip k x) t      = case lookup k t of
Just y  -> pred x y
Nothing -> False
subsetBy pred Nil t            = True

{--------------------------------------------------------------------
Mapping
--------------------------------------------------------------------}
-- | /O(n)/. Map a function over all values in the map.
map :: (a -> b) -> IntMap a -> IntMap b
map f m
= mapWithKey (\k x -> f x) m

-- | /O(n)/. Map a function over all values in the map.
mapWithKey :: (Key -> a -> b) -> IntMap a -> IntMap b
mapWithKey f t
= case t of
Bin p m l r -> Bin p m (mapWithKey f l) (mapWithKey f r)
Tip k x     -> Tip k (f k x)
Nil         -> Nil

-- | /O(n)/. The function @mapAccum@ threads an accumulating
-- argument through the map in an unspecified order.
mapAccum :: (a -> b -> (a,c)) -> a -> IntMap b -> (a,IntMap c)
mapAccum f a m
= mapAccumWithKey (\a k x -> f a x) a m

-- | /O(n)/. The function @mapAccumWithKey@ threads an accumulating
-- argument through the map in an unspecified order.
mapAccumWithKey :: (a -> Key -> b -> (a,c)) -> a -> IntMap b -> (a,IntMap c)
mapAccumWithKey f a t
= mapAccumL f a t

-- | /O(n)/. The function @mapAccumL@ threads an accumulating
-- argument through the map in pre-order.
mapAccumL :: (a -> Key -> b -> (a,c)) -> a -> IntMap b -> (a,IntMap c)
mapAccumL f a t
= case t of
Bin p m l r -> let (a1,l') = mapAccumL f a l
(a2,r') = mapAccumL f a1 r
in (a2,Bin p m l' r')
Tip k x     -> let (a',x') = f a k x in (a',Tip k x')
Nil         -> (a,Nil)

-- | /O(n)/. The function @mapAccumR@ threads an accumulating
-- argument throught the map in post-order.
mapAccumR :: (a -> Key -> b -> (a,c)) -> a -> IntMap b -> (a,IntMap c)
mapAccumR f a t
= case t of
Bin p m l r -> let (a1,r') = mapAccumR f a r
(a2,l') = mapAccumR f a1 l
in (a2,Bin p m l' r')
Tip k x     -> let (a',x') = f a k x in (a',Tip k x')
Nil         -> (a,Nil)

{--------------------------------------------------------------------
Filter
--------------------------------------------------------------------}
-- | /O(n)/. Filter all values that satisfy some predicate.
filter :: (a -> Bool) -> IntMap a -> IntMap a
filter p m
= filterWithKey (\k x -> p x) m

-- | /O(n)/. Filter all keys\/values that satisfy some predicate.
filterWithKey :: (Key -> a -> Bool) -> IntMap a -> IntMap a
filterWithKey pred t
= case t of
Bin p m l r
-> bin p m (filterWithKey pred l) (filterWithKey pred r)
Tip k x
| pred k x  -> t
| otherwise -> Nil
Nil -> Nil

-- | /O(n)/. partition the map according to some predicate. The first
-- map contains all elements that satisfy the predicate, the second all
partition :: (a -> Bool) -> IntMap a -> (IntMap a,IntMap a)
partition p m
= partitionWithKey (\k x -> p x) m

-- | /O(n)/. partition the map according to some predicate. The first
-- map contains all elements that satisfy the predicate, the second all
partitionWithKey :: (Key -> a -> Bool) -> IntMap a -> (IntMap a,IntMap a)
partitionWithKey pred t
= case t of
Bin p m l r
-> let (l1,l2) = partitionWithKey pred l
(r1,r2) = partitionWithKey pred r
in (bin p m l1 r1, bin p m l2 r2)
Tip k x
| pred k x  -> (t,Nil)
| otherwise -> (Nil,t)
Nil -> (Nil,Nil)

-- | /O(log n)/. The expression (@split k map@) is a pair @(map1,map2)@
-- where all keys in @map1@ are lower than @k@ and all keys in
-- @map2@ larger than @k@.
split :: Key -> IntMap a -> (IntMap a,IntMap a)
split k t
= case t of
Bin p m l r
| zero k m  -> let (lt,gt) = split k l in (lt,union gt r)
| otherwise -> let (lt,gt) = split k r in (union l lt,gt)
Tip ky y
| k>ky      -> (t,Nil)
| k<ky      -> (Nil,t)
| otherwise -> (Nil,Nil)
Nil -> (Nil,Nil)

-- | /O(log n)/. Performs a 'split' but also returns whether the pivot
-- key was found in the original map.
splitLookup :: Key -> IntMap a -> (Maybe a,IntMap a,IntMap a)
splitLookup k t
= case t of
Bin p m l r
| zero k m  -> let (found,lt,gt) = splitLookup k l in (found,lt,union gt r)
| otherwise -> let (found,lt,gt) = splitLookup k r in (found,union l lt,gt)
Tip ky y
| k>ky      -> (Nothing,t,Nil)
| k<ky      -> (Nothing,Nil,t)
| otherwise -> (Just y,Nil,Nil)
Nil -> (Nothing,Nil,Nil)

{--------------------------------------------------------------------
Fold
--------------------------------------------------------------------}
-- | /O(n)/. Fold over the elements of a map in an unspecified order.
--
-- > sum map   = fold (+) 0 map
-- > elems map = fold (:) [] map
fold :: (a -> b -> b) -> b -> IntMap a -> b
fold f z t
= foldWithKey (\k x y -> f x y) z t

-- | /O(n)/. Fold over the elements of a map in an unspecified order.
--
-- > keys map = foldWithKey (\k x ks -> k:ks) [] map
foldWithKey :: (Key -> a -> b -> b) -> b -> IntMap a -> b
foldWithKey f z t
= foldR f z t

foldR :: (Key -> a -> b -> b) -> b -> IntMap a -> b
foldR f z t
= case t of
Bin p m l r -> foldR f (foldR f z r) l
Tip k x     -> f k x z
Nil         -> z

{--------------------------------------------------------------------
List variations
--------------------------------------------------------------------}
-- | /O(n)/. Return all elements of the map.
elems :: IntMap a -> [a]
elems m
= foldWithKey (\k x xs -> x:xs) [] m

-- | /O(n)/. Return all keys of the map.
keys  :: IntMap a -> [Key]
keys m
= foldWithKey (\k x ks -> k:ks) [] m

-- | /O(n)/. Return all key\/value pairs in the map.
assocs :: IntMap a -> [(Key,a)]
assocs m
= toList m

{--------------------------------------------------------------------
Lists
--------------------------------------------------------------------}
-- | /O(n)/. Convert the map to a list of key\/value pairs.
toList :: IntMap a -> [(Key,a)]
toList t
= foldWithKey (\k x xs -> (k,x):xs) [] t

-- | /O(n)/. Convert the map to a list of key\/value pairs where the
-- keys are in ascending order.
toAscList :: IntMap a -> [(Key,a)]
toAscList t
= -- NOTE: the following algorithm only works for big-endian trees
let (pos,neg) = span (\(k,x) -> k >=0) (foldR (\k x xs -> (k,x):xs) [] t) in neg ++ pos

-- | /O(n*min(n,W))/. Create a map from a list of key\/value pairs.
fromList :: [(Key,a)] -> IntMap a
fromList xs
= foldlStrict ins empty xs
where
ins t (k,x)  = insert k x t

-- | /O(n*min(n,W))/.  Create a map from a list of key\/value pairs with a combining function. See also 'fromAscListWith'.
fromListWith :: (a -> a -> a) -> [(Key,a)] -> IntMap a
fromListWith f xs
= fromListWithKey (\k x y -> f x y) xs

-- | /O(n*min(n,W))/.  Build a map from a list of key\/value pairs with a combining function. See also fromAscListWithKey'.
fromListWithKey :: (Key -> a -> a -> a) -> [(Key,a)] -> IntMap a
fromListWithKey f xs
= foldlStrict ins empty xs
where
ins t (k,x) = insertWithKey f k x t

-- | /O(n*min(n,W))/. Build a map from a list of key\/value pairs where
-- the keys are in ascending order.
fromAscList :: [(Key,a)] -> IntMap a
fromAscList xs
= fromList xs

-- | /O(n*min(n,W))/. Build a map from a list of key\/value pairs where
-- the keys are in ascending order, with a combining function on equal keys.
fromAscListWith :: (a -> a -> a) -> [(Key,a)] -> IntMap a
fromAscListWith f xs
= fromListWith f xs

-- | /O(n*min(n,W))/. Build a map from a list of key\/value pairs where
-- the keys are in ascending order, with a combining function on equal keys.
fromAscListWithKey :: (Key -> a -> a -> a) -> [(Key,a)] -> IntMap a
fromAscListWithKey f xs
= fromListWithKey f xs

-- | /O(n*min(n,W))/. Build a map from a list of key\/value pairs where
-- the keys are in ascending order and all distinct.
fromDistinctAscList :: [(Key,a)] -> IntMap a
fromDistinctAscList xs
= fromList xs

{--------------------------------------------------------------------
Eq
--------------------------------------------------------------------}
instance Eq a => Eq (IntMap a) where
t1 == t2  = equal t1 t2
t1 /= t2  = nequal t1 t2

equal :: Eq a => IntMap a -> IntMap a -> Bool
equal (Bin p1 m1 l1 r1) (Bin p2 m2 l2 r2)
= (m1 == m2) && (p1 == p2) && (equal l1 l2) && (equal r1 r2)
equal (Tip kx x) (Tip ky y)
= (kx == ky) && (x==y)
equal Nil Nil = True
equal t1 t2   = False

nequal :: Eq a => IntMap a -> IntMap a -> Bool
nequal (Bin p1 m1 l1 r1) (Bin p2 m2 l2 r2)
= (m1 /= m2) || (p1 /= p2) || (nequal l1 l2) || (nequal r1 r2)
nequal (Tip kx x) (Tip ky y)
= (kx /= ky) || (x/=y)
nequal Nil Nil = False
nequal t1 t2   = True

instance Show a => Show (IntMap a) where
showsPrec d t   = showMap (toList t)

showMap :: (Show a) => [(Key,a)] -> ShowS
showMap []
= showString "{}"
showMap (x:xs)
= showChar '{' . showElem x . showTail xs
where
showTail []     = showChar '}'
showTail (x:xs) = showChar ',' . showElem x . showTail xs

showElem (k,x)  = shows k . showString ":=" . shows x

{--------------------------------------------------------------------
Debugging
--------------------------------------------------------------------}
-- | /O(n)/. Show the tree that implements the map. The tree is shown
-- in a compressed, hanging format.
showTree :: Show a => IntMap a -> String
showTree s
= showTreeWith True False s

{- | /O(n)/. The expression (@showTreeWith hang wide map@) shows
the tree that implements the map. If @hang@ is
@True@, a /hanging/ tree is shown otherwise a rotated tree is shown. If
@wide@ is true, an extra wide version is shown.
-}
showTreeWith :: Show a => Bool -> Bool -> IntMap a -> String
showTreeWith hang wide t
| hang      = (showsTreeHang wide [] t) ""
| otherwise = (showsTree wide [] [] t) ""

showsTree :: Show a => Bool -> [String] -> [String] -> IntMap a -> ShowS
showsTree wide lbars rbars t
= case t of
Bin p m l r
-> showsTree wide (withBar rbars) (withEmpty rbars) r .
showWide wide rbars .
showsBars lbars . showString (showBin p m) . showString "\n" .
showWide wide lbars .
showsTree wide (withEmpty lbars) (withBar lbars) l
Tip k x
-> showsBars lbars . showString " " . shows k . showString ":=" . shows x . showString "\n"
Nil -> showsBars lbars . showString "|\n"

showsTreeHang :: Show a => Bool -> [String] -> IntMap a -> ShowS
showsTreeHang wide bars t
= case t of
Bin p m l r
-> showsBars bars . showString (showBin p m) . showString "\n" .
showWide wide bars .
showsTreeHang wide (withBar bars) l .
showWide wide bars .
showsTreeHang wide (withEmpty bars) r
Tip k x
-> showsBars bars . showString " " . shows k . showString ":=" . shows x . showString "\n"
Nil -> showsBars bars . showString "|\n"

showBin p m
= "*" -- ++ show (p,m)

showWide wide bars
| wide      = showString (concat (reverse bars)) . showString "|\n"
| otherwise = id

showsBars :: [String] -> ShowS
showsBars bars
= case bars of
[] -> id
_  -> showString (concat (reverse (tail bars))) . showString node

node           = "+--"
withBar bars   = "|  ":bars
withEmpty bars = "   ":bars

{--------------------------------------------------------------------
Helpers
--------------------------------------------------------------------}
{--------------------------------------------------------------------
Join
--------------------------------------------------------------------}
join :: Prefix -> IntMap a -> Prefix -> IntMap a -> IntMap a
join p1 t1 p2 t2
| zero p1 m = Bin p m t1 t2
| otherwise = Bin p m t2 t1
where

{--------------------------------------------------------------------
@bin@ assures that we never have empty trees within a tree.
--------------------------------------------------------------------}
bin :: Prefix -> Mask -> IntMap a -> IntMap a -> IntMap a
bin p m l Nil = l
bin p m Nil r = r
bin p m l r   = Bin p m l r

{--------------------------------------------------------------------
Endian independent bit twiddling
--------------------------------------------------------------------}
zero :: Key -> Mask -> Bool
zero i m
= (natFromInt i) .&. (natFromInt m) == 0

nomatch,match :: Key -> Prefix -> Mask -> Bool
nomatch i p m
= (mask i m) /= p

match i p m
= (mask i m) == p

= maskW (natFromInt i) (natFromInt m)

{--------------------------------------------------------------------
Big endian operations
--------------------------------------------------------------------}
maskW :: Nat -> Nat -> Prefix
= intFromNat (i .&. (complement (m-1) `xor` m))

shorter m1 m2
= (natFromInt m1) > (natFromInt m2)

= intFromNat (highestBitMask (natFromInt p1 `xor` natFromInt p2))

{----------------------------------------------------------------------
Finding the highest bit (mask) in a word [x] can be done efficiently in
three ways:
* convert to a floating point value and the mantissa tells us the
[log2(x)] that corresponds with the highest bit position. The mantissa
is retrieved either via the standard C function [frexp] or by some bit
twiddling on IEEE compatible numbers (float). Note that one needs to
use at least [double] precision for an accurate mantissa of 32 bit
numbers.
* use bit twiddling, a logarithmic sequence of bitwise or's and shifts (bit).
* use processor specific assembler instruction (asm).

The most portable way would be [bit], but is it efficient enough?
I have measured the cycle counts of the different methods on an AMD
Athlon-XP 1800 (~ Pentium III 1.8Ghz) using the RDTSC instruction:

--------------
frexp   200
float    33
bit      11
asm      12

highestBit:     method  cycles
--------------
frexp   195
float    33
bit      11
asm      11

Wow, the bit twiddling is on today's RISC like machines even faster
than a single CISC instruction (BSR)!
----------------------------------------------------------------------}

{----------------------------------------------------------------------
[highestBitMask] returns a word where only the highest bit is set.
It is found by first setting all bits in lower positions than the
highest bit and than taking an exclusive or with the original value.
Allthough the function may look expensive, GHC compiles this into
excellent C code that subsequently compiled into highly efficient
machine code. The algorithm is derived from Jorg Arndt's FXT library.
----------------------------------------------------------------------}
= case (x .|. shiftRL x 1) of
x -> case (x .|. shiftRL x 2) of
x -> case (x .|. shiftRL x 4) of
x -> case (x .|. shiftRL x 8) of
x -> case (x .|. shiftRL x 16) of
x -> case (x .|. shiftRL x 32) of   -- for 64 bit platforms
x -> (x `xor` (shiftRL x 1))

{--------------------------------------------------------------------
Utilities
--------------------------------------------------------------------}
foldlStrict f z xs
= case xs of
[]     -> z
(x:xx) -> let z' = f z x in seq z' (foldlStrict f z' xx)

{-
{--------------------------------------------------------------------
Testing
--------------------------------------------------------------------}
testTree :: [Int] -> IntMap Int
testTree xs   = fromList [(x,x*x*30696 `mod` 65521) | x <- xs]
test1 = testTree [1..20]
test2 = testTree [30,29..10]
test3 = testTree [1,4,6,89,2323,53,43,234,5,79,12,9,24,9,8,423,8,42,4,8,9,3]

{--------------------------------------------------------------------
QuickCheck
--------------------------------------------------------------------}
qcheck prop
= check config prop
where
config = Config
{ configMaxTest = 500
, configMaxFail = 5000
, configSize    = \n -> (div n 2 + 3)
, configEvery   = \n args -> let s = show n in s ++ [ '\b' | _ <- s ]
}

{--------------------------------------------------------------------
Arbitrary, reasonably balanced trees
--------------------------------------------------------------------}
instance Arbitrary a => Arbitrary (IntMap a) where
arbitrary = do{ ks <- arbitrary
; xs <- mapM (\k -> do{ x <- arbitrary; return (k,x)}) ks
; return (fromList xs)
}

{--------------------------------------------------------------------
Single, Insert, Delete
--------------------------------------------------------------------}
prop_Single :: Key -> Int -> Bool
prop_Single k x
= (insert k x empty == single k x)

prop_InsertDelete :: Key -> Int -> IntMap Int -> Property
prop_InsertDelete k x t
= not (member k t) ==> delete k (insert k x t) == t

prop_UpdateDelete :: Key -> IntMap Int -> Bool
prop_UpdateDelete k t
= update (const Nothing) k t == delete k t

{--------------------------------------------------------------------
Union
--------------------------------------------------------------------}
prop_UnionInsert :: Key -> Int -> IntMap Int -> Bool
prop_UnionInsert k x t
= union (single k x) t == insert k x t

prop_UnionAssoc :: IntMap Int -> IntMap Int -> IntMap Int -> Bool
prop_UnionAssoc t1 t2 t3
= union t1 (union t2 t3) == union (union t1 t2) t3

prop_UnionComm :: IntMap Int -> IntMap Int -> Bool
prop_UnionComm t1 t2
= (union t1 t2 == unionWith (\x y -> y) t2 t1)

prop_Diff :: [(Key,Int)] -> [(Key,Int)] -> Bool
prop_Diff xs ys
=  List.sort (keys (difference (fromListWith (+) xs) (fromListWith (+) ys)))
== List.sort ((List.\\) (nub (Prelude.map fst xs))  (nub (Prelude.map fst ys)))

prop_Int :: [(Key,Int)] -> [(Key,Int)] -> Bool
prop_Int xs ys
=  List.sort (keys (intersection (fromListWith (+) xs) (fromListWith (+) ys)))
== List.sort (nub ((List.intersect) (Prelude.map fst xs)  (Prelude.map fst ys)))

{--------------------------------------------------------------------
Lists
--------------------------------------------------------------------}
prop_Ordered
= forAll (choose (5,100)) \$ \n ->
let xs = [(x,()) | x <- [0..n::Int]]
in fromAscList xs == fromList xs

prop_List :: [Key] -> Bool
prop_List xs
= (sort (nub xs) == [x | (x,()) <- toAscList (fromList [(x,()) | x <- xs])])
-}