{- | > ghci> toAdjList $ vacuum (fix (0:)) > [(0,[1,0]),(1,[])] > > ghci> ppHs $ vacuum (fix (0:)) > fromList > [(0, > HNode{nodePtrs = [1, 0], nodeLits = [40425920], > nodeInfo = > ConInfo{itabPkg = "ghc-prim", itabMod = "GHC.Types", itabCon = ":", > itabPtrs = 2, itabLits = 0, itabType = CONSTR_2_0, itabSrtLen = 1, > itabCode = > [72, 131, 195, 2, 255, 101, 0, 144, 224, 30, 0, 0, 0, 0, 0, 0]}}), > (1, > HNode{nodePtrs = [], nodeLits = [0, 40425920], > nodeInfo = > ConInfo{itabPkg = "integer", itabMod = "GHC.Integer.Internals", > itabCon = "S#", itabPtrs = 0, itabLits = 1, itabType = CONSTR_0_1, > itabSrtLen = 0, > itabCode = > [72, 255, 195, 255, 101, 0, 102, 144, 152, 0, 0, 0, 0, 0, 0, 0]}})] > > ghci> ppDot . nameGraph $ vacuum (fix (0:)) > digraph g { > graph [rankdir=LR, splines=true]; > node [label="\N", shape=none, fontcolor=blue, fontname=courier]; > edge [color=black, style=dotted, fontname=courier, arrowname=onormal]; > > ":|0" -> {"S#|1",":|0"} > "S#|1" -> {} > } -} module GHC.Vacuum ( HNodeId ,HNode(..) ,emptyHNode ,vacuum,dump ,vacuumTo,dumpTo ,toAdjList ,nameGraph ,ppHs,ppDot ,Closure(..) ,InfoTab(..) ,getClosure ,nodePkg,nodeMod ,nodeName,itabName ) where import GHC.Vacuum.Dot as Dot import GHC.Vacuum.ClosureType import GHC.Vacuum.GHC as GHC hiding (Closure) import Data.Char import Data.Word import Data.List import Data.Map(Map) import Data.IntMap(IntMap) import qualified Data.IntMap as IM import qualified Data.Map as M import Data.Monoid(Monoid(..)) import Data.Array.IArray import System.IO.Unsafe import Control.Monad import Data.Bits import Language.Haskell.Meta.Utils(pretty) import Foreign import GHC.Arr(Array(..)) import GHC.Exts ----------------------------------------------------------------------------- -- | . vacuum :: a -> IntMap HNode vacuum a = unsafePerformIO (dump a) -- | Stop after a given depth. vacuumTo :: Int -> a -> IntMap HNode vacuumTo n a = unsafePerformIO (dumpTo n a) dump :: a -> IO (IntMap HNode) dump a = execH (dumpH a) dumpTo :: Int -> a -> IO (IntMap HNode) dumpTo n a = execH (dumpToH n a) ----------------------------------------------------------------------------- toAdjList :: IntMap HNode -> [(Int, [Int])] toAdjList = fmap (mapsnd nodePtrs) . IM.toList nameGraph :: IntMap HNode -> [(String, [String])] nameGraph m = let g = toAdjList m pp i = maybe "..." (\n -> nodeName n ++ "|" ++ show i) (IM.lookup i m) in fmap (\(x,xs) -> (pp x, fmap pp xs)) g ----------------------------------------------------------------------------- ppHs :: (Show a) => a -> Doc ppHs = text . pretty ppDot :: [(String, [String])] -> Doc ppDot = Dot.graphToDot id ----------------------------------------------------------------------------- type HNodeId = Int data HNode = HNode {nodePtrs :: [HNodeId] ,nodeLits :: [Word] ,nodeInfo :: InfoTab} deriving(Eq,Ord,Read,Show) data InfoTab = ConInfo {itabPkg :: String ,itabMod :: String ,itabCon :: String ,itabPtrs :: Word ,itabLits :: Word ,itabType :: ClosureType ,itabSrtLen :: Word ,itabCode :: [Word]} | OtherInfo {itabPtrs :: Word ,itabLits :: Word ,itabType :: ClosureType ,itabSrtLen :: Word ,itabCode :: [Word]} deriving(Eq,Ord,Read,Show) data Closure = Closure {closPtrs :: [HValue] ,closLits :: [Word] ,closITab :: InfoTab} deriving(Show) -- So we can derive Show for Closure instance Show HValue where show _ = "(HValue)" ------------------------------------------------ emptyHNode :: ClosureType -> HNode emptyHNode ct = HNode {nodePtrs = [] ,nodeLits = [] ,nodeInfo = if isCon ct then ConInfo [] [] [] 0 0 ct 0 [] else OtherInfo 0 0 ct 0 []} nodePkg :: HNode -> String nodeMod :: HNode -> String nodeName :: HNode -> String nodePkg = fst3 . itabName . nodeInfo nodeMod = snd3 . itabName . nodeInfo nodeName = trd3 . itabName . nodeInfo fst3 (x,_,_) = x snd3 (_,x,_) = x trd3 (_,_,x) = x itabName :: InfoTab -> (String, String, String) itabName i@(ConInfo{}) = (itabPkg i, itabMod i, itabCon i) itabName _ = ([], [], []) ------------------------------------------------ -- | This is in part borrowed from @RtClosureInspect.getClosureData@. getClosure :: a -> IO Closure getClosure a = a `seq` case unpackClosure# a of (# iptr ,ptrs ,nptrs #) -> do let iptr' | ghciTablesNextToCode = Ptr iptr | otherwise = Ptr iptr `plusPtr` negate wORD_SIZE -- the info pointer we get back from unpackClosure# -- is to the beginning of the standard info table, -- but the Storable instance for info tables takes -- into account the extra entry pointer when -- !ghciTablesNextToCode, so we must adjust here. itab <- peekInfoTab iptr' let elems = fromIntegral (itabPtrs itab) ptrsList = if elems < 1 then [] else dumpArray (Array 0 (elems - 1) elems ptrs) lits = [W# (indexWordArray# nptrs i) | I# i <- [0.. fromIntegral (itabLits itab)] ] return (Closure ptrsList lits itab) peekInfoTab :: Ptr StgInfoTable -> IO InfoTab peekInfoTab p = do stg <- peek p let ct = (toEnum . fromIntegral . GHC.tipe) stg case ct of _ | isCon ct -> do (a,b,c) <- dataConInfoPtrToNames (castPtr p) return $ ConInfo {itabPkg = a ,itabMod = b ,itabCon = c ,itabPtrs = (fromIntegral . GHC.stgItblPtrs) stg ,itabLits = (fromIntegral . GHC.nptrs) stg ,itabType = ct ,itabSrtLen = fromIntegral (GHC.srtlen stg) ,itabCode = fmap fromIntegral (GHC.code stg)} _ -> return $ OtherInfo {itabPtrs = (fromIntegral . GHC.stgItblPtrs) stg ,itabLits = (fromIntegral . GHC.nptrs) stg ,itabType = ct ,itabSrtLen = fromIntegral (GHC.srtlen stg) ,itabCode = fmap fromIntegral (GHC.code stg)} ------------------------------------------------ type H a = S Env a execH :: H a -> IO (IntMap HNode) execH m = snd `fmap` runH m runH :: H a -> IO (a, IntMap HNode) runH m = do (a, s) <- runS m emptyEnv return (a, graph s) data Env = Env {uniq :: HNodeId ,seen :: [(HValue, HNodeId)] ,hvals :: IntMap HValue ,graph :: IntMap HNode} emptyEnv :: Env emptyEnv = Env {uniq = 0 ,seen = [] ,hvals = mempty ,graph = mempty} ------------------------------------------------ -- | Walk the reachable heap (sub)graph rooted at @a@, -- and collect it as a graph of @HNode@s in @H@'s state. dumpH :: a -> H () dumpH a = go =<< rootH a where go :: HValue -> H () go a = a `seq` do ids <- nodeH a case ids of [] -> return () _ -> mapM_ go =<< mapM getHVal ids dumpToH :: Int -> a -> H () dumpToH n _ | n < 1 = return () dumpToH n a = go (n-1) =<< rootH a where go :: Int -> HValue -> H () go 0 _ = return () go n a = a `seq` do ids <- nodeH a case ids of [] -> return () _ -> mapM_ (go (n-1)) =<< mapM getHVal ids -- | Needed since i don't know of a way -- to go @a -> HValue@ directly (unsafeCoercing -- directly doesn't work (i tried)). data Box a = Box a -- | Turn the root into an @HValue@ to start off. rootH :: a -> H HValue rootH a = let b = a `seq` Box a in b `seq` do c <- io (getClosureData b) case dumpArray (GHC.ptrs c) of [hval] -> return hval _ -> error "zomg" -- | Add this @HValue@ to the graph, then -- add it's successor's not already seen, and -- return the @HNodeId@'s of these newly-seen nodes -- (which we've added to the graph in @H@'s state). -- CURRENTLY unpackClosure# ENTERS *_ARR_WORDS -- (WHICH IT SHOULDN'T, SEE BOTTOM OF THIS FILE) -- (e.g. BbyteArray#). THIS IS A PROBLEM -- FOR LARGE INTEGERS, AMONG OTHER THINGS. nodeH :: HValue -> H [HNodeId] nodeH a = a `seq` do clos <- io (getClosure a) (i, _) <- getId a let itab = closITab clos ptrs = closPtrs clos ptrs' <- case itabType itab of t | isCon t -> -- XXX: hackish casing on conname until unpackClosure# is fixed. -- Try to cover a few common cases. case itabCon itab of "J#" -> return [] -- avoid the ByteArray# "MVar" -> return [] -- avoid the MVar# "STRef" -> return [] -- avoid the MutVar# "Array" -> return (take 2 ptrs) -- avoid the Array# _ -> return ptrs | otherwise -> return ptrs xs <- mapM getId ptrs' let news = (fmap fst . fst . partition snd) xs n = HNode (fmap fst xs) (closLits clos) (closITab clos) insertG i n return news ------------------------------------------------ getHVal :: HNodeId -> H HValue getHVal i = (IM.! i) `fmap` gets hvals insertG :: HNodeId -> HNode -> H () insertG i n = do g <- gets graph modify (\e->e{graph = IM.insert i n g}) newId :: H HNodeId newId = do n <- gets uniq modify (\e->e{uniq=n+1}) return n getId :: HValue -> H (HNodeId, Bool) getId hval = hval `seq` do s <- gets seen case look hval s of Just i -> return (i, False) Nothing -> do i <- newId vs <- gets hvals modify (\e->e{seen=(hval,i):s ,hvals= IM.insert i hval vs}) return (i, True) ------------------------------------------------ look :: HValue -> [(HValue, a)] -> Maybe a look _ [] = Nothing look hval ((x,i):xs) | hval .==. x = Just i | otherwise = look hval xs (.==.) :: HValue -> HValue -> Bool a .==. b = a `seq` b `seq` (0 /= I# (reallyUnsafePtrEquality# a b)) dumpArray :: Array Int a -> [a] dumpArray a = let (m,n) = bounds a in fmap (a!) [m..n] mapfst f = \(a,b) -> (f a,b) mapsnd f = \(a,b) -> (a,f b) f *** g = \(a, b) -> (f a, g b) p2i :: Ptr a -> Int i2p :: Int -> Ptr a p2i (Ptr a#) = I# (addr2Int# a#) i2p (I# n#) = Ptr (int2Addr# n#) ------------------------------------------------ newtype S s a = S {unS :: forall o. s -> (s -> a -> IO o) -> IO o} instance Functor (S s) where fmap f (S g) = S (\s k -> g s (\s a -> k s (f a))) instance Monad (S s) where return a = S (\s k -> k s a) S g >>= f = S (\s k -> g s (\s a -> unS (f a) s k)) get :: S s s get = S (\s k -> k s s) gets :: (s -> a) -> S s a gets f = S (\s k -> k s (f s)) set :: s -> S s () set s = S (\_ k -> k s ()) io :: IO a -> S s a io m = S (\s k -> k s =<< m) modify :: (s -> s) -> S s () modify f = S (\s k -> k (f s) ()) runS :: S s a -> s -> IO (a, s) runS (S g) s = g s (\s a -> return (a, s)) ------------------------------------------------ {- RE: the array entering problem: rts/StgMiscClosures.cmm /* ---------------------------------------------------------------------------- Arrays These come in two basic flavours: arrays of data (StgArrWords) and arrays of pointers (StgArrPtrs). They all have a similar layout: ___________________________ | Info | No. of | data.... | Ptr | Words | --------------------------- These are *unpointed* objects: i.e. they cannot be entered. !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ------------------------------------------------------------------------- */ INFO_TABLE(stg_ARR_WORDS, 0, 0, ARR_WORDS, "ARR_WORDS", "ARR_WORDS") { foreign "C" barf("ARR_WORDS object entered!") never returns; } INFO_TABLE(stg_MUT_ARR_PTRS_CLEAN, 0, 0, MUT_ARR_PTRS_CLEAN, "MUT_ARR_PTRS_CLEAN", "MUT_ARR_PTRS_CLEAN") { foreign "C" barf("MUT_ARR_PTRS_CLEAN object entered!") never returns; } INFO_TABLE(stg_MUT_ARR_PTRS_DIRTY, 0, 0, MUT_ARR_PTRS_DIRTY, "MUT_ARR_PTRS_DIRTY", "MUT_ARR_PTRS_DIRTY") { foreign "C" barf("MUT_ARR_PTRS_DIRTY object entered!") never returns; } INFO_TABLE(stg_MUT_ARR_PTRS_FROZEN, 0, 0, MUT_ARR_PTRS_FROZEN, "MUT_ARR_PTRS_FROZEN", "MUT_ARR_PTRS_FROZEN") { foreign "C" barf("MUT_ARR_PTRS_FROZEN object entered!") never returns; } INFO_TABLE(stg_MUT_ARR_PTRS_FROZEN0, 0, 0, MUT_ARR_PTRS_FROZEN0, "MUT_ARR_PTRS_FROZEN0", "MUT_ARR_PTRS_FROZEN0") { foreign "C" barf("MUT_ARR_PTRS_FROZEN0 object entered!") never returns; } -} {- unpackClosurezh_fast { /* args: R1 = closure to analyze */ // TODO: Consider the absence of ptrs or nonptrs as a special case ? W_ info, ptrs, nptrs, p, ptrs_arr, nptrs_arr; info = %GET_STD_INFO(UNTAG(R1)); // Some closures have non-standard layout, so we omit those here. W_ type; type = TO_W_(%INFO_TYPE(info)); switch [0 .. N_CLOSURE_TYPES] type { case THUNK_SELECTOR : { ptrs = 1; nptrs = 0; goto out; } case THUNK, THUNK_1_0, THUNK_0_1, THUNK_2_0, THUNK_1_1, THUNK_0_2, THUNK_STATIC, AP, PAP, AP_STACK, BCO : { -- XXXXXXXXXXX: need to check for *ARR_WORDS here too! ptrs = 0; nptrs = 0; goto out; } default: { ptrs = TO_W_(%INFO_PTRS(info)); nptrs = TO_W_(%INFO_NPTRS(info)); goto out; }} out: W_ ptrs_arr_sz, nptrs_arr_sz; nptrs_arr_sz = SIZEOF_StgArrWords + WDS(nptrs); ptrs_arr_sz = SIZEOF_StgMutArrPtrs + WDS(ptrs); ALLOC_PRIM (ptrs_arr_sz + nptrs_arr_sz, R1_PTR, unpackClosurezh_fast); W_ clos; clos = UNTAG(R1); ptrs_arr = Hp - nptrs_arr_sz - ptrs_arr_sz + WDS(1); nptrs_arr = Hp - nptrs_arr_sz + WDS(1); SET_HDR(ptrs_arr, stg_MUT_ARR_PTRS_FROZEN_info, W_[CCCS]); StgMutArrPtrs_ptrs(ptrs_arr) = ptrs; p = 0; for: if(p < ptrs) { W_[ptrs_arr + SIZEOF_StgMutArrPtrs + WDS(p)] = StgClosure_payload(clos,p); p = p + 1; goto for; } SET_HDR(nptrs_arr, stg_ARR_WORDS_info, W_[CCCS]); StgArrWords_words(nptrs_arr) = nptrs; p = 0; for2: if(p < nptrs) { W_[BYTE_ARR_CTS(nptrs_arr) + WDS(p)] = StgClosure_payload(clos, p+ptrs); p = p + 1; goto for2; } RET_NPP(info, ptrs_arr, nptrs_arr); } -}