{-# LANGUAGE BangPatterns, UnboxedTuples, MagicHash #-} {- | > > ghci> toAdjList $ vacuum (fix (0:)) > [(0,[1,0]),(1,[])] > > ghci> ppHs $ vacuum (fix (0:)) > fromList > [(0, > HNode{nodePtrs = [1, 0], nodeLits = [40425920], > nodeInfo = > ConInfo{itabPkg = "ghc-prim", itabMod = "GHC.Types", itabCon = ":", > itabPtrs = 2, itabLits = 0, itabType = CONSTR_2_0, itabSrtLen = 1, > itabCode = > [72, 131, 195, 2, 255, 101, 0, 144, 224, 30, 0, 0, 0, 0, 0, 0]}}), > (1, > HNode{nodePtrs = [], nodeLits = [0, 40425920], > nodeInfo = > ConInfo{itabPkg = "integer", itabMod = "GHC.Integer.Internals", > itabCon = "S#", itabPtrs = 0, itabLits = 1, itabType = CONSTR_0_1, > itabSrtLen = 0, > itabCode = > [72, 255, 195, 255, 101, 0, 102, 144, 152, 0, 0, 0, 0, 0, 0, 0]}})] > > ghci> ppDot . nameGraph $ vacuum (fix (0:)) > digraph g { > graph [rankdir=LR, splines=true]; > node [label="\N", shape=none, fontcolor=blue, fontname=courier]; > edge [color=black, style=dotted, fontname=courier, arrowname=onormal]; > ":|0" -> {"S#|1";":|0"} > "S#|1" -> {} > } > > ghci> let a = [0..] > ghci> toAdjList $ vacuumLazy a > [(0,[])] > ghci> take 2 a > [0,1] > ghci> toAdjList $ vacuumLazy a > [(0,[1,2]),(1,[]),(2,[3,4]),(3,[]),(4,[])] > ghci> take 3 a > [0,1,2] > ghci> toAdjList $ vacuumLazy a > [(0,[1,2]),(1,[]),(2,[3,4]),(3,[]),(4,[5,6]),(5,[]),(6,[])] > -} module GHC.Vacuum ( HNodeId ,HNode(..) ,emptyHNode ,summary ,vacuum,vacuumTo,vacuumLazy,vacuumStream,vacuumDebug ,dump,dumpTo,dumpLazy ,toAdjList,toAdjPair ,nameGraph ,ShowHNode(..) ,showHNodes --,ppHs ,ppDot ,Draw(..),G(..) ,draw,printDraw,split ,Closure(..) ,InfoTab(..) ,getClosure ,closureType ,getInfoTab ,getInfoPtr ,peekInfoTab ,nodePkg,nodeMod ,nodeName,itabName ,HValue --,module GHC.Vacuum.Q ) where import GHC.Vacuum.Q import GHC.Vacuum.Util import GHC.Vacuum.Types import GHC.Vacuum.Pretty import GHC.Vacuum.ClosureType import GHC.Vacuum.Internal as GHC import Data.List import Data.Char import Data.Word import Data.Bits import Data.Map(Map) import Data.IntMap(IntMap) import qualified Data.IntMap as IM import qualified Data.Map as M import Data.Monoid(Monoid(..)) import System.IO.Unsafe import Control.Monad import Control.Applicative import Control.Exception import Prelude hiding(catch) import Control.Concurrent import Foreign hiding (unsafePerformIO) import GHC.Arr(Array(..)) import GHC.Exts import System.Mem.StableName ----------------------------------------------------------------------------- -- | Vacuums the entire reachable heap subgraph rooted at the @a@. vacuum :: a -> IntMap HNode vacuum a = unsafePerformIO (dump a) -- | Returns nodes as it encounters them. vacuumStream :: a -> [(HNodeId, HNode)] vacuumStream a = unsafePerformIO (dumpStream a) vacuumDebug :: a -> IntMap [(StableName HValue, HNodeId)] vacuumDebug a = unsafePerformIO (dumpDebug a) -- | Stop after a given depth. vacuumTo :: Int -> a -> IntMap HNode vacuumTo n a = unsafePerformIO (dumpTo n a) -- | Doesn't force anything. vacuumLazy :: a -> IntMap HNode vacuumLazy a = unsafePerformIO (dumpLazy a) dump :: a -> IO (IntMap HNode) dump a = execH (dumpH a) dumpStream :: a -> IO [(HNodeId, HNode)] dumpStream a = streamH (flip dumpStreamH a) dumpDebug :: a -> IO (IntMap [(StableName HValue, HNodeId)]) dumpDebug a = debugH (dumpH a) dumpTo :: Int -> a -> IO (IntMap HNode) dumpTo n a = execH (dumpToH n a) dumpLazy :: a -> IO (IntMap HNode) dumpLazy a = execH (dumpLazyH a) ----------------------------------------------------------------------------- getInfoPtr :: a -> Ptr StgInfoTable getInfoPtr a = let b = a `seq` Box a in b `seq` case unpackClosure# a of (# iptr,_,_ #) | ghciTablesNextToCode -> Ptr iptr | otherwise -> Ptr iptr `plusPtr` negate wORD_SIZE -- | Turn @undefined@ into the the exception value it throws. defined :: HValue -> IO HValue defined a = grab (return $! a) (return . unsafeCoerce#) grab :: IO a -> (SomeException -> IO a) -> IO a grab = catch -- | This is in part borrowed from @RtClosureInspect.getClosureData@. getClosure :: a -> IO Closure getClosure a = grab (getClosure_ a) getClosure getClosure_ :: a -> IO Closure getClosure_ a = case unpackClosure# a of (# iptr ,ptrs ,nptrs #) -> do let iptr' | ghciTablesNextToCode = Ptr iptr | otherwise = Ptr iptr `plusPtr` negate wORD_SIZE itab <- peekInfoTab iptr' let elems = fromIntegral (itabPtrs itab) ptrs0 = dumpArray# ptrs 0 elems lits = [W# (indexWordArray# nptrs i) | I# i <- [0.. fromIntegral (itabLits itab-1)] ] case itab of -- follow indirections, because mkStableName follows -- indirections as well. OtherInfo { itabType = tipe } | tipe == IND || tipe == IND_OLDGEN || tipe == IND_PERM || tipe == IND_OLDGEN_PERM || tipe == IND_STATIC -> case ptrs0 of (dest : _) -> getClosure_ dest _ -> return (Closure ptrs0 lits itab) -- using indexArray# makes sure that the HValue is looked up without -- evaluating the value itself. This is not possible with Data.Array.! dumpArray# :: Array# HValue -> Int -> Int -> [HValue] dumpArray# arr# i@(I# i#) l | i >= l = [] | otherwise = case indexArray# arr# i# of (# h #) -> h : dumpArray# arr# (i+1) l closureType :: a -> IO ClosureType closureType a = itabType <$> getInfoTab a getInfoTab :: a -> IO InfoTab getInfoTab a = case unpackClosure# a of (# iptr ,_ ,_ #) -> do let iptr' | ghciTablesNextToCode = Ptr iptr | otherwise = Ptr iptr `plusPtr` negate wORD_SIZE peekInfoTab iptr' peekInfoTab :: Ptr StgInfoTable -> IO InfoTab peekInfoTab p = do stg <- peek p let ct = (toEnum . fromIntegral . GHC.tipe) stg case ct of _ | hasName stg -> do (a,b,c) <- dataConInfoPtrToNames (castPtr p) return $ ConInfo {itabPkg = a ,itabMod = b ,itabCon = c ,itabPtrs = (fromIntegral . GHC.ptrs) stg ,itabLits = (fromIntegral . GHC.nptrs) stg ,itabType = ct ,itabSrtLen = fromIntegral (GHC.srtlen stg) ,itabCode = fmap fromIntegral (GHC.code stg)} _ -> return $ OtherInfo {itabPtrs = (fromIntegral . GHC.ptrs) stg ,itabLits = (fromIntegral . GHC.nptrs) stg ,itabType = ct ,itabSrtLen = fromIntegral (GHC.srtlen stg) ,itabCode = fmap fromIntegral (GHC.code stg)} -- Check whether this closure is a datacon and sanity check -- to make sure we didn't read garbage from memory into this -- StgInfoTable (because if we did, we'll probably segfault -- during dataConInfoPtrToNames). hasName :: StgInfoTable -> Bool hasName stg = let ct = (toEnum . fromIntegral . GHC.tipe) stg :: ClosureType lits = (fromIntegral . GHC.nptrs) stg :: Int ptrs = (fromIntegral . GHC.ptrs) stg :: Int in isCon ct && lits < 1024 -- It seems the ptrs info the ItblEnv && ptrs < 1024 -- gotten from ByteCodeItbls are borked -- in some way, *OR* (and more likely) -- there's some caveat i'm not aware of. ------------------------------------------------ type H a = S Env a execH :: H a -> IO (IntMap HNode) execH m = snd `fmap` runH m runH :: H a -> IO (a, IntMap HNode) runH m = do (a, s) <- runS m emptyEnv return (a, graph s) runH_ :: H a -> IO () runH_ m = do _ <- runS m emptyEnv return () debugH :: H a -> IO (IntMap [(StableName HValue,HNodeId)]) debugH m = (seen . snd) <$> runS m emptyEnv streamH :: (Q (Maybe a) -> H b) -> IO [a] streamH m = do q <- newQ tid <- forkIO (runH_ (m q) `finally` putQ q Nothing) fmap fromJust <$> takeWhileQ isJust q fromJust :: Maybe a -> a fromJust (Just a) = a isJust :: Maybe a -> Bool isJust (Just{}) = True isJust _ = False ------------------------------------------------ -- | Walk the reachable heap (sub)graph rooted at @a@, -- and collect it as a graph of @HNode@s in @H@'s state. vacuumH :: (HValue -> H [HNodeId]) -> a -> H () vacuumH scan a = go =<< rootH a where go :: HValue -> H () go a = do ids <- scan a case ids of [] -> return () _ -> mapM_ go =<< mapM getHVal ids dumpH :: a -> H () dumpH = vacuumH nodeH dumpLazyH :: a -> H () dumpLazyH = vacuumH nodeLazyH dumpStreamH :: Q (Maybe (HNodeId,HNode)) -> a -> H () dumpStreamH q = vacuumH (nodeStreamH q) -- argh, this one doesn't -- quite fit into the pattern dumpToH :: Int -> a -> H () dumpToH n _ | n < 1 = return () dumpToH n a = go (n-1) =<< rootH a where go :: Int -> HValue -> H () go 0 _ = return () go n a = do ids <- nodeH a case ids of [] -> return () _ -> mapM_ (go (n-1)) =<< mapM getHVal ids -- | Turn the root into an @HValue@ to start off. rootH :: a -> H HValue rootH a = return (unsafeCoerce# a) -- | Add this @HValue@ to the graph, then -- add it's successor's not already seen, and -- return the @HNodeId@'s of these newly-seen nodes -- (which we've added to the graph in @H@'s state). scanNodeH :: (HValue -> H (HNodeId,Closure,[HValue])) -> (HValue -> H (HNodeId, Bool)) -> (HNodeId -> HNode -> H ()) -> HValue -> H [HNodeId] scanNodeH getNode getId withNode a = do (i,clos,ptrs) <- getNode a xs <- mapM getId ptrs let news = (fmap fst . fst . partition snd) xs n = HNode (fmap fst xs) (closLits clos) (closITab clos) withNode i n return news nodeH :: HValue -> H [HNodeId] nodeH = scanNodeH getNodeH' getId' insertG nodeLazyH :: HValue -> H [HNodeId] nodeLazyH = scanNodeH getNodeH getId insertG nodeStreamH :: Q (Maybe (HNodeId, HNode)) -> HValue -> H [HNodeId] nodeStreamH q = scanNodeH getNodeH' getId' (\i n -> io (putQ q (Just (i,n)))) getNodeH :: HValue -> H (HNodeId, Closure, [HValue]) getNodeH a = do clos <- io (getClosure a) (i, _) <- getId a let itab = closITab clos ptrs = closPtrs clos case itabType itab of t -- IMPORTANT: Following any of the pointer(s) -- inside a @THUNK@ results in the chop (aka segfault). | isThunk t -> return (i,clos,[]) | otherwise -> return (i,clos,ptrs) getNodeH' :: HValue -> H (HNodeId, Closure, [HValue]) getNodeH' a = do clos <- io (getClosure a) let itab = closITab clos ptrs = closPtrs clos case itabType itab of t | isThunk t -> getNodeH' =<< io (defined a) | otherwise -> do (i, _) <- getId a return (i,clos,ptrs) ------------------------------------------------ getHVal :: HNodeId -> H HValue getHVal i = do -- the following pattern match is important: it evaluates the lookup -- without evaluating x itself Box x <- (IM.! i) `fmap` gets hvals return x insertG :: HNodeId -> HNode -> H () insertG i n = do g <- gets graph modify (\e->e{graph = IM.insert i n g}) newId :: H HNodeId newId = do n <- gets uniq modify (\e->e{uniq=n+1}) return n getId :: HValue -> H (HNodeId, Bool) getId hval = do sn <- io (makeStableName hval) let h = hashStableName sn s <- gets seen case lookup sn =<< IM.lookup h s of Just i -> return (i, False) Nothing -> do i <- newId vs <- gets hvals modify (\e->e{seen= IM.insertWith (++) h [(sn,i)] s ,hvals= IM.insert i (Box hval) vs}) return (i, True) getId' :: HValue -> H (HNodeId, Bool) getId' hval = do clos <- io (getClosure hval) let itab = closITab clos case itabType itab of t | isThunk t -> getId' =<< io (defined hval) | otherwise -> getId hval ------------------------------------------------ {- rts/StgMiscClosures.cmm /* ---------------------------------------------------------------------------- Arrays These come in two basic flavours: arrays of data (StgArrWords) and arrays of pointers (StgArrPtrs). They all have a similar layout: ___________________________ | Info | No. of | data.... | Ptr | Words | --------------------------- These are *unpointed* objects: i.e. they cannot be entered. ------------------------------------------------------------------------- */ INFO_TABLE(stg_ARR_WORDS, 0, 0, ARR_WORDS, "ARR_WORDS", "ARR_WORDS") { foreign "C" barf("ARR_WORDS object entered!") never returns; } INFO_TABLE(stg_MUT_ARR_PTRS_CLEAN, 0, 0, MUT_ARR_PTRS_CLEAN, "MUT_ARR_PTRS_CLEAN", "MUT_ARR_PTRS_CLEAN") { foreign "C" barf("MUT_ARR_PTRS_CLEAN object entered!") never returns; } INFO_TABLE(stg_MUT_ARR_PTRS_DIRTY, 0, 0, MUT_ARR_PTRS_DIRTY, "MUT_ARR_PTRS_DIRTY", "MUT_ARR_PTRS_DIRTY") { foreign "C" barf("MUT_ARR_PTRS_DIRTY object entered!") never returns; } INFO_TABLE(stg_MUT_ARR_PTRS_FROZEN, 0, 0, MUT_ARR_PTRS_FROZEN, "MUT_ARR_PTRS_FROZEN", "MUT_ARR_PTRS_FROZEN") { foreign "C" barf("MUT_ARR_PTRS_FROZEN object entered!") never returns; } INFO_TABLE(stg_MUT_ARR_PTRS_FROZEN0, 0, 0, MUT_ARR_PTRS_FROZEN0, "MUT_ARR_PTRS_FROZEN0", "MUT_ARR_PTRS_FROZEN0") { foreign "C" barf("MUT_ARR_PTRS_FROZEN0 object entered!") never returns; } -} {- unpackClosurezh_fast { /* args: R1 = closure to analyze */ // TODO: Consider the absence of ptrs or nonptrs as a special case ? W_ info, ptrs, nptrs, p, ptrs_arr, nptrs_arr; info = %GET_STD_INFO(UNTAG(R1)); // Some closures have non-standard layout, so we omit those here. W_ type; type = TO_W_(%INFO_TYPE(info)); switch [0 .. N_CLOSURE_TYPES] type { case THUNK_SELECTOR : { ptrs = 1; nptrs = 0; goto out; } case THUNK, THUNK_1_0, THUNK_0_1, THUNK_2_0, THUNK_1_1, THUNK_0_2, THUNK_STATIC, AP, PAP, AP_STACK, BCO : { ptrs = 0; nptrs = 0; goto out; } default: { ptrs = TO_W_(%INFO_PTRS(info)); nptrs = TO_W_(%INFO_NPTRS(info)); goto out; }} out: W_ ptrs_arr_sz, nptrs_arr_sz; nptrs_arr_sz = SIZEOF_StgArrWords + WDS(nptrs); ptrs_arr_sz = SIZEOF_StgMutArrPtrs + WDS(ptrs); ALLOC_PRIM (ptrs_arr_sz + nptrs_arr_sz, R1_PTR, unpackClosurezh_fast); W_ clos; clos = UNTAG(R1); ptrs_arr = Hp - nptrs_arr_sz - ptrs_arr_sz + WDS(1); nptrs_arr = Hp - nptrs_arr_sz + WDS(1); SET_HDR(ptrs_arr, stg_MUT_ARR_PTRS_FROZEN_info, W_[CCCS]); StgMutArrPtrs_ptrs(ptrs_arr) = ptrs; p = 0; for: if(p < ptrs) { W_[ptrs_arr + SIZEOF_StgMutArrPtrs + WDS(p)] = StgClosure_payload(clos,p); p = p + 1; goto for; } SET_HDR(nptrs_arr, stg_ARR_WORDS_info, W_[CCCS]); StgArrWords_words(nptrs_arr) = nptrs; p = 0; for2: if(p < nptrs) { W_[BYTE_ARR_CTS(nptrs_arr) + WDS(p)] = StgClosure_payload(clos, p+ptrs); p = p + 1; goto for2; } RET_NPP(info, ptrs_arr, nptrs_arr); } -}