{-# LANGUAGE CPP, FlexibleInstances, Rank2Types, BangPatterns #-} -- | -- Module : Data.Vector.Fusion.Bundle -- Copyright : (c) Roman Leshchinskiy 2008-2010 -- License : BSD-style -- -- Maintainer : Roman Leshchinskiy -- Stability : experimental -- Portability : non-portable -- -- Bundles for stream fusion -- module Data.Vector.Fusion.Bundle ( -- * Types Step(..), Chunk(..), Bundle, MBundle, -- * In-place markers inplace, -- * Size hints size, sized, -- * Length information length, null, -- * Construction empty, singleton, cons, snoc, replicate, generate, (++), -- * Accessing individual elements head, last, (!!), (!?), -- * Substreams slice, init, tail, take, drop, -- * Mapping map, concatMap, flatten, unbox, -- * Zipping indexed, indexedR, zipWith, zipWith3, zipWith4, zipWith5, zipWith6, zip, zip3, zip4, zip5, zip6, -- * Filtering filter, takeWhile, dropWhile, -- * Searching elem, notElem, find, findIndex, -- * Folding foldl, foldl1, foldl', foldl1', foldr, foldr1, -- * Specialised folds and, or, -- * Unfolding unfoldr, unfoldrN, iterateN, -- * Scans prescanl, prescanl', postscanl, postscanl', scanl, scanl', scanl1, scanl1', -- * Enumerations enumFromStepN, enumFromTo, enumFromThenTo, -- * Conversions toList, fromList, fromListN, unsafeFromList, lift, fromVector, reVector, fromVectors, concatVectors, -- * Monadic combinators mapM, mapM_, zipWithM, zipWithM_, filterM, foldM, fold1M, foldM', fold1M', eq, cmp, eqBy, cmpBy ) where import Data.Vector.Generic.Base ( Vector ) import Data.Vector.Fusion.Bundle.Size import Data.Vector.Fusion.Util import Data.Vector.Fusion.Stream.Monadic ( Stream(..), Step(..) ) import Data.Vector.Fusion.Bundle.Monadic ( Chunk(..) ) import qualified Data.Vector.Fusion.Bundle.Monadic as M import qualified Data.Vector.Fusion.Stream.Monadic as S import Prelude hiding ( length, null, replicate, (++), head, last, (!!), init, tail, take, drop, map, concatMap, zipWith, zipWith3, zip, zip3, filter, takeWhile, dropWhile, elem, notElem, foldl, foldl1, foldr, foldr1, and, or, scanl, scanl1, enumFromTo, enumFromThenTo, mapM, mapM_ ) #if MIN_VERSION_base(4,9,0) import Data.Functor.Classes (Eq1 (..), Ord1 (..)) #endif import GHC.Base ( build ) -- Data.Vector.Internal.Check is unused #define NOT_VECTOR_MODULE #include "vector.h" -- | The type of pure streams type Bundle = M.Bundle Id -- | Alternative name for monadic streams type MBundle = M.Bundle inplace :: (forall m. Monad m => S.Stream m a -> S.Stream m b) -> (Size -> Size) -> Bundle v a -> Bundle v b {-# INLINE_FUSED inplace #-} inplace f g b = b `seq` M.fromStream (f (M.elements b)) (g (M.size b)) {-# RULES "inplace/inplace [Vector]" forall (f1 :: forall m. Monad m => S.Stream m a -> S.Stream m a) (f2 :: forall m. Monad m => S.Stream m a -> S.Stream m a) g1 g2 s. inplace f1 g1 (inplace f2 g2 s) = inplace (f1 . f2) (g1 . g2) s #-} -- | Convert a pure stream to a monadic stream lift :: Monad m => Bundle v a -> M.Bundle m v a {-# INLINE_FUSED lift #-} lift (M.Bundle (Stream step s) (Stream vstep t) v sz) = M.Bundle (Stream (return . unId . step) s) (Stream (return . unId . vstep) t) v sz -- | 'Size' hint of a 'Bundle' size :: Bundle v a -> Size {-# INLINE size #-} size = M.size -- | Attach a 'Size' hint to a 'Bundle' sized :: Bundle v a -> Size -> Bundle v a {-# INLINE sized #-} sized = M.sized -- Length -- ------ -- | Length of a 'Bundle' length :: Bundle v a -> Int {-# INLINE length #-} length = unId . M.length -- | Check if a 'Bundle' is empty null :: Bundle v a -> Bool {-# INLINE null #-} null = unId . M.null -- Construction -- ------------ -- | Empty 'Bundle' empty :: Bundle v a {-# INLINE empty #-} empty = M.empty -- | Singleton 'Bundle' singleton :: a -> Bundle v a {-# INLINE singleton #-} singleton = M.singleton -- | Replicate a value to a given length replicate :: Int -> a -> Bundle v a {-# INLINE replicate #-} replicate = M.replicate -- | Generate a stream from its indices generate :: Int -> (Int -> a) -> Bundle v a {-# INLINE generate #-} generate = M.generate -- | Prepend an element cons :: a -> Bundle v a -> Bundle v a {-# INLINE cons #-} cons = M.cons -- | Append an element snoc :: Bundle v a -> a -> Bundle v a {-# INLINE snoc #-} snoc = M.snoc infixr 5 ++ -- | Concatenate two 'Bundle's (++) :: Bundle v a -> Bundle v a -> Bundle v a {-# INLINE (++) #-} (++) = (M.++) -- Accessing elements -- ------------------ -- | First element of the 'Bundle' or error if empty head :: Bundle v a -> a {-# INLINE head #-} head = unId . M.head -- | Last element of the 'Bundle' or error if empty last :: Bundle v a -> a {-# INLINE last #-} last = unId . M.last infixl 9 !! -- | Element at the given position (!!) :: Bundle v a -> Int -> a {-# INLINE (!!) #-} s !! i = unId (s M.!! i) infixl 9 !? -- | Element at the given position or 'Nothing' if out of bounds (!?) :: Bundle v a -> Int -> Maybe a {-# INLINE (!?) #-} s !? i = unId (s M.!? i) -- Substreams -- ---------- -- | Extract a substream of the given length starting at the given position. slice :: Int -- ^ starting index -> Int -- ^ length -> Bundle v a -> Bundle v a {-# INLINE slice #-} slice = M.slice -- | All but the last element init :: Bundle v a -> Bundle v a {-# INLINE init #-} init = M.init -- | All but the first element tail :: Bundle v a -> Bundle v a {-# INLINE tail #-} tail = M.tail -- | The first @n@ elements take :: Int -> Bundle v a -> Bundle v a {-# INLINE take #-} take = M.take -- | All but the first @n@ elements drop :: Int -> Bundle v a -> Bundle v a {-# INLINE drop #-} drop = M.drop -- Mapping -- --------------- -- | Map a function over a 'Bundle' map :: (a -> b) -> Bundle v a -> Bundle v b {-# INLINE map #-} map = M.map unbox :: Bundle v (Box a) -> Bundle v a {-# INLINE unbox #-} unbox = M.unbox concatMap :: (a -> Bundle v b) -> Bundle v a -> Bundle v b {-# INLINE concatMap #-} concatMap = M.concatMap -- Zipping -- ------- -- | Pair each element in a 'Bundle' with its index indexed :: Bundle v a -> Bundle v (Int,a) {-# INLINE indexed #-} indexed = M.indexed -- | Pair each element in a 'Bundle' with its index, starting from the right -- and counting down indexedR :: Int -> Bundle v a -> Bundle v (Int,a) {-# INLINE_FUSED indexedR #-} indexedR = M.indexedR -- | Zip two 'Bundle's with the given function zipWith :: (a -> b -> c) -> Bundle v a -> Bundle v b -> Bundle v c {-# INLINE zipWith #-} zipWith = M.zipWith -- | Zip three 'Bundle's with the given function zipWith3 :: (a -> b -> c -> d) -> Bundle v a -> Bundle v b -> Bundle v c -> Bundle v d {-# INLINE zipWith3 #-} zipWith3 = M.zipWith3 zipWith4 :: (a -> b -> c -> d -> e) -> Bundle v a -> Bundle v b -> Bundle v c -> Bundle v d -> Bundle v e {-# INLINE zipWith4 #-} zipWith4 = M.zipWith4 zipWith5 :: (a -> b -> c -> d -> e -> f) -> Bundle v a -> Bundle v b -> Bundle v c -> Bundle v d -> Bundle v e -> Bundle v f {-# INLINE zipWith5 #-} zipWith5 = M.zipWith5 zipWith6 :: (a -> b -> c -> d -> e -> f -> g) -> Bundle v a -> Bundle v b -> Bundle v c -> Bundle v d -> Bundle v e -> Bundle v f -> Bundle v g {-# INLINE zipWith6 #-} zipWith6 = M.zipWith6 zip :: Bundle v a -> Bundle v b -> Bundle v (a,b) {-# INLINE zip #-} zip = M.zip zip3 :: Bundle v a -> Bundle v b -> Bundle v c -> Bundle v (a,b,c) {-# INLINE zip3 #-} zip3 = M.zip3 zip4 :: Bundle v a -> Bundle v b -> Bundle v c -> Bundle v d -> Bundle v (a,b,c,d) {-# INLINE zip4 #-} zip4 = M.zip4 zip5 :: Bundle v a -> Bundle v b -> Bundle v c -> Bundle v d -> Bundle v e -> Bundle v (a,b,c,d,e) {-# INLINE zip5 #-} zip5 = M.zip5 zip6 :: Bundle v a -> Bundle v b -> Bundle v c -> Bundle v d -> Bundle v e -> Bundle v f -> Bundle v (a,b,c,d,e,f) {-# INLINE zip6 #-} zip6 = M.zip6 -- Filtering -- --------- -- | Drop elements which do not satisfy the predicate filter :: (a -> Bool) -> Bundle v a -> Bundle v a {-# INLINE filter #-} filter = M.filter -- | Longest prefix of elements that satisfy the predicate takeWhile :: (a -> Bool) -> Bundle v a -> Bundle v a {-# INLINE takeWhile #-} takeWhile = M.takeWhile -- | Drop the longest prefix of elements that satisfy the predicate dropWhile :: (a -> Bool) -> Bundle v a -> Bundle v a {-# INLINE dropWhile #-} dropWhile = M.dropWhile -- Searching -- --------- infix 4 `elem` -- | Check whether the 'Bundle' contains an element elem :: Eq a => a -> Bundle v a -> Bool {-# INLINE elem #-} elem x = unId . M.elem x infix 4 `notElem` -- | Inverse of `elem` notElem :: Eq a => a -> Bundle v a -> Bool {-# INLINE notElem #-} notElem x = unId . M.notElem x -- | Yield 'Just' the first element matching the predicate or 'Nothing' if no -- such element exists. find :: (a -> Bool) -> Bundle v a -> Maybe a {-# INLINE find #-} find f = unId . M.find f -- | Yield 'Just' the index of the first element matching the predicate or -- 'Nothing' if no such element exists. findIndex :: (a -> Bool) -> Bundle v a -> Maybe Int {-# INLINE findIndex #-} findIndex f = unId . M.findIndex f -- Folding -- ------- -- | Left fold foldl :: (a -> b -> a) -> a -> Bundle v b -> a {-# INLINE foldl #-} foldl f z = unId . M.foldl f z -- | Left fold on non-empty 'Bundle's foldl1 :: (a -> a -> a) -> Bundle v a -> a {-# INLINE foldl1 #-} foldl1 f = unId . M.foldl1 f -- | Left fold with strict accumulator foldl' :: (a -> b -> a) -> a -> Bundle v b -> a {-# INLINE foldl' #-} foldl' f z = unId . M.foldl' f z -- | Left fold on non-empty 'Bundle's with strict accumulator foldl1' :: (a -> a -> a) -> Bundle v a -> a {-# INLINE foldl1' #-} foldl1' f = unId . M.foldl1' f -- | Right fold foldr :: (a -> b -> b) -> b -> Bundle v a -> b {-# INLINE foldr #-} foldr f z = unId . M.foldr f z -- | Right fold on non-empty 'Bundle's foldr1 :: (a -> a -> a) -> Bundle v a -> a {-# INLINE foldr1 #-} foldr1 f = unId . M.foldr1 f -- Specialised folds -- ----------------- and :: Bundle v Bool -> Bool {-# INLINE and #-} and = unId . M.and or :: Bundle v Bool -> Bool {-# INLINE or #-} or = unId . M.or -- Unfolding -- --------- -- | Unfold unfoldr :: (s -> Maybe (a, s)) -> s -> Bundle v a {-# INLINE unfoldr #-} unfoldr = M.unfoldr -- | Unfold at most @n@ elements unfoldrN :: Int -> (s -> Maybe (a, s)) -> s -> Bundle v a {-# INLINE unfoldrN #-} unfoldrN = M.unfoldrN -- | Apply function n-1 times to value. Zeroth element is original value. iterateN :: Int -> (a -> a) -> a -> Bundle v a {-# INLINE iterateN #-} iterateN = M.iterateN -- Scans -- ----- -- | Prefix scan prescanl :: (a -> b -> a) -> a -> Bundle v b -> Bundle v a {-# INLINE prescanl #-} prescanl = M.prescanl -- | Prefix scan with strict accumulator prescanl' :: (a -> b -> a) -> a -> Bundle v b -> Bundle v a {-# INLINE prescanl' #-} prescanl' = M.prescanl' -- | Suffix scan postscanl :: (a -> b -> a) -> a -> Bundle v b -> Bundle v a {-# INLINE postscanl #-} postscanl = M.postscanl -- | Suffix scan with strict accumulator postscanl' :: (a -> b -> a) -> a -> Bundle v b -> Bundle v a {-# INLINE postscanl' #-} postscanl' = M.postscanl' -- | Haskell-style scan scanl :: (a -> b -> a) -> a -> Bundle v b -> Bundle v a {-# INLINE scanl #-} scanl = M.scanl -- | Haskell-style scan with strict accumulator scanl' :: (a -> b -> a) -> a -> Bundle v b -> Bundle v a {-# INLINE scanl' #-} scanl' = M.scanl' -- | Scan over a non-empty 'Bundle' scanl1 :: (a -> a -> a) -> Bundle v a -> Bundle v a {-# INLINE scanl1 #-} scanl1 = M.scanl1 -- | Scan over a non-empty 'Bundle' with a strict accumulator scanl1' :: (a -> a -> a) -> Bundle v a -> Bundle v a {-# INLINE scanl1' #-} scanl1' = M.scanl1' -- Comparisons -- ----------- -- | Check if two 'Bundle's are equal eq :: (Eq a) => Bundle v a -> Bundle v a -> Bool {-# INLINE eq #-} eq = eqBy (==) eqBy :: (a -> b -> Bool) -> Bundle v a -> Bundle v b -> Bool {-# INLINE eqBy #-} eqBy e x y = unId (M.eqBy e x y) -- | Lexicographically compare two 'Bundle's cmp :: (Ord a) => Bundle v a -> Bundle v a -> Ordering {-# INLINE cmp #-} cmp = cmpBy compare cmpBy :: (a -> b -> Ordering) -> Bundle v a -> Bundle v b -> Ordering {-# INLINE cmpBy #-} cmpBy c x y = unId (M.cmpBy c x y) instance Eq a => Eq (M.Bundle Id v a) where {-# INLINE (==) #-} (==) = eq instance Ord a => Ord (M.Bundle Id v a) where {-# INLINE compare #-} compare = cmp #if MIN_VERSION_base(4,9,0) instance Eq1 (M.Bundle Id v) where {-# INLINE liftEq #-} liftEq = eqBy instance Ord1 (M.Bundle Id v) where {-# INLINE liftCompare #-} liftCompare = cmpBy #endif -- Monadic combinators -- ------------------- -- | Apply a monadic action to each element of the stream, producing a monadic -- stream of results mapM :: Monad m => (a -> m b) -> Bundle v a -> M.Bundle m v b {-# INLINE mapM #-} mapM f = M.mapM f . lift -- | Apply a monadic action to each element of the stream mapM_ :: Monad m => (a -> m b) -> Bundle v a -> m () {-# INLINE mapM_ #-} mapM_ f = M.mapM_ f . lift zipWithM :: Monad m => (a -> b -> m c) -> Bundle v a -> Bundle v b -> M.Bundle m v c {-# INLINE zipWithM #-} zipWithM f as bs = M.zipWithM f (lift as) (lift bs) zipWithM_ :: Monad m => (a -> b -> m c) -> Bundle v a -> Bundle v b -> m () {-# INLINE zipWithM_ #-} zipWithM_ f as bs = M.zipWithM_ f (lift as) (lift bs) -- | Yield a monadic stream of elements that satisfy the monadic predicate filterM :: Monad m => (a -> m Bool) -> Bundle v a -> M.Bundle m v a {-# INLINE filterM #-} filterM f = M.filterM f . lift -- | Monadic fold foldM :: Monad m => (a -> b -> m a) -> a -> Bundle v b -> m a {-# INLINE foldM #-} foldM m z = M.foldM m z . lift -- | Monadic fold over non-empty stream fold1M :: Monad m => (a -> a -> m a) -> Bundle v a -> m a {-# INLINE fold1M #-} fold1M m = M.fold1M m . lift -- | Monadic fold with strict accumulator foldM' :: Monad m => (a -> b -> m a) -> a -> Bundle v b -> m a {-# INLINE foldM' #-} foldM' m z = M.foldM' m z . lift -- | Monad fold over non-empty stream with strict accumulator fold1M' :: Monad m => (a -> a -> m a) -> Bundle v a -> m a {-# INLINE fold1M' #-} fold1M' m = M.fold1M' m . lift -- Enumerations -- ------------ -- | Yield a 'Bundle' of the given length containing the values @x@, @x+y@, -- @x+y+y@ etc. enumFromStepN :: Num a => a -> a -> Int -> Bundle v a {-# INLINE enumFromStepN #-} enumFromStepN = M.enumFromStepN -- | Enumerate values -- -- /WARNING:/ This operations can be very inefficient. If at all possible, use -- 'enumFromStepN' instead. enumFromTo :: Enum a => a -> a -> Bundle v a {-# INLINE enumFromTo #-} enumFromTo = M.enumFromTo -- | Enumerate values with a given step. -- -- /WARNING:/ This operations is very inefficient. If at all possible, use -- 'enumFromStepN' instead. enumFromThenTo :: Enum a => a -> a -> a -> Bundle v a {-# INLINE enumFromThenTo #-} enumFromThenTo = M.enumFromThenTo -- Conversions -- ----------- -- | Convert a 'Bundle' to a list toList :: Bundle v a -> [a] {-# INLINE toList #-} -- toList s = unId (M.toList s) toList s = build (\c n -> toListFB c n s) -- This supports foldr/build list fusion that GHC implements toListFB :: (a -> b -> b) -> b -> Bundle v a -> b {-# INLINE [0] toListFB #-} toListFB c n M.Bundle{M.sElems = Stream step t} = go t where go s = case unId (step s) of Yield x s' -> x `c` go s' Skip s' -> go s' Done -> n -- | Create a 'Bundle' from a list fromList :: [a] -> Bundle v a {-# INLINE fromList #-} fromList = M.fromList -- | Create a 'Bundle' from the first @n@ elements of a list -- -- > fromListN n xs = fromList (take n xs) fromListN :: Int -> [a] -> Bundle v a {-# INLINE fromListN #-} fromListN = M.fromListN unsafeFromList :: Size -> [a] -> Bundle v a {-# INLINE unsafeFromList #-} unsafeFromList = M.unsafeFromList fromVector :: Vector v a => v a -> Bundle v a {-# INLINE fromVector #-} fromVector = M.fromVector reVector :: Bundle u a -> Bundle v a {-# INLINE reVector #-} reVector = M.reVector fromVectors :: Vector v a => [v a] -> Bundle v a {-# INLINE fromVectors #-} fromVectors = M.fromVectors concatVectors :: Vector v a => Bundle u (v a) -> Bundle v a {-# INLINE concatVectors #-} concatVectors = M.concatVectors -- | Create a 'Bundle' of values from a 'Bundle' of streamable things flatten :: (a -> s) -> (s -> Step s b) -> Size -> Bundle v a -> Bundle v b {-# INLINE_FUSED flatten #-} flatten mk istep sz = M.flatten (return . mk) (return . istep) sz . lift