{-# LANGUAGE MultiParamTypeClasses, FlexibleInstances, ScopedTypeVariables #-} -- | -- Module : Data.Vector.Primitive.Mutable -- Copyright : (c) Roman Leshchinskiy 2008-2010 -- License : BSD-style -- -- Maintainer : Roman Leshchinskiy <rl@cse.unsw.edu.au> -- Stability : experimental -- Portability : non-portable -- -- Mutable primitive vectors. -- module Data.Vector.Primitive.Mutable ( -- * Mutable vectors of primitive types MVector(..), IOVector, STVector, Prim, -- * Operations on mutable vectors length, overlaps, slice, new, newWith, read, write, swap, clear, set, copy, grow, -- * Unsafe operations unsafeSlice, unsafeNew, unsafeNewWith, unsafeRead, unsafeWrite, unsafeSwap, unsafeCopy, unsafeGrow ) where import qualified Data.Vector.Generic.Mutable as G import Data.Primitive.ByteArray import Data.Primitive ( Prim, sizeOf ) import Control.Monad.Primitive import Control.Monad ( liftM ) import Prelude hiding( length, read ) import Data.Typeable ( Typeable ) #include "vector.h" -- | Mutable vectors of primitive types. data MVector s a = MVector {-# UNPACK #-} !Int {-# UNPACK #-} !Int {-# UNPACK #-} !(MutableByteArray s) deriving ( Typeable ) type IOVector = MVector RealWorld type STVector s = MVector s instance Prim a => G.MVector MVector a where basicLength (MVector _ n _) = n basicUnsafeSlice j m (MVector i n arr) = MVector (i+j) m arr {-# INLINE basicOverlaps #-} basicOverlaps (MVector i m arr1) (MVector j n arr2) = sameMutableByteArray arr1 arr2 && (between i j (j+n) || between j i (i+m)) where between x y z = x >= y && x < z {-# INLINE basicUnsafeNew #-} basicUnsafeNew n = MVector 0 n `liftM` newByteArray (n * sizeOf (undefined :: a)) {-# INLINE basicUnsafeRead #-} basicUnsafeRead (MVector i n arr) j = readByteArray arr (i+j) {-# INLINE basicUnsafeWrite #-} basicUnsafeWrite (MVector i n arr) j x = writeByteArray arr (i+j) x {-# INLINE basicUnsafeCopy #-} basicUnsafeCopy (MVector i n dst) (MVector j _ src) = memcpyByteArray dst (i * sz) src (j * sz) (n * sz) where sz = sizeOf (undefined :: a) -- | Yield a part of the mutable vector without copying it. No bounds checks -- are performed. unsafeSlice :: Prim a => Int -- ^ starting index -> Int -- ^ length of the slice -> MVector s a -> MVector s a {-# INLINE unsafeSlice #-} unsafeSlice = G.unsafeSlice -- | Create a mutable vector of the given length. The length is not checked. unsafeNew :: (PrimMonad m, Prim a) => Int -> m (MVector (PrimState m) a) {-# INLINE unsafeNew #-} unsafeNew = G.unsafeNew -- | Create a mutable vector of the given length and fill it with an -- initial value. The length is not checked. unsafeNewWith :: (PrimMonad m, Prim a) => Int -> a -> m (MVector (PrimState m) a) {-# INLINE unsafeNewWith #-} unsafeNewWith = G.unsafeNewWith -- | Yield the element at the given position. No bounds checks are performed. unsafeRead :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> Int -> m a {-# INLINE unsafeRead #-} unsafeRead = G.unsafeRead -- | Replace the element at the given position. No bounds checks are performed. unsafeWrite :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> Int -> a -> m () {-# INLINE unsafeWrite #-} unsafeWrite = G.unsafeWrite -- | Swap the elements at the given positions. No bounds checks are performed. unsafeSwap :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> Int -> Int -> m () {-# INLINE unsafeSwap #-} unsafeSwap = G.unsafeSwap -- | Copy a vector. The two vectors must have the same length and may not -- overlap. This is not checked. unsafeCopy :: (PrimMonad m, Prim a) => MVector (PrimState m) a -- ^ target -> MVector (PrimState m) a -- ^ source -> m () {-# INLINE unsafeCopy #-} unsafeCopy = G.unsafeCopy -- | Grow a vector by the given number of elements. The number must be -- positive but this is not checked. unsafeGrow :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> Int -> m (MVector (PrimState m) a) {-# INLINE unsafeGrow #-} unsafeGrow = G.unsafeGrow -- | Length of the mutable vector. length :: Prim a => MVector s a -> Int {-# INLINE length #-} length = G.length -- Check whether two vectors overlap. overlaps :: Prim a => MVector s a -> MVector s a -> Bool {-# INLINE overlaps #-} overlaps = G.overlaps -- | Yield a part of the mutable vector without copying it. slice :: Prim a => Int -> Int -> MVector s a -> MVector s a {-# INLINE slice #-} slice = G.slice -- | Create a mutable vector of the given length. new :: (PrimMonad m, Prim a) => Int -> m (MVector (PrimState m) a) {-# INLINE new #-} new = G.new -- | Create a mutable vector of the given length and fill it with an -- initial value. newWith :: (PrimMonad m, Prim a) => Int -> a -> m (MVector (PrimState m) a) {-# INLINE newWith #-} newWith = G.newWith -- | Yield the element at the given position. read :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> Int -> m a {-# INLINE read #-} read = G.read -- | Replace the element at the given position. write :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> Int -> a -> m () {-# INLINE write #-} write = G.write -- | Swap the elements at the given positions. swap :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> Int -> Int -> m () {-# INLINE swap #-} swap = G.swap -- | Reset all elements of the vector to some undefined value, clearing all -- references to external objects. This is usually a noop for unboxed vectors. clear :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> m () {-# INLINE clear #-} clear = G.clear -- | Set all elements of the vector to the given value. set :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> a -> m () {-# INLINE set #-} set = G.set -- | Copy a vector. The two vectors must have the same length and may not -- overlap. copy :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> MVector (PrimState m) a -> m () {-# INLINE copy #-} copy = G.copy -- | Grow a vector by the given number of elements. The number must be -- positive. grow :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> Int -> m (MVector (PrimState m) a) {-# INLINE grow #-} grow = G.grow