{-# LANGUAGE FlexibleInstances, MultiParamTypeClasses, TypeFamilies, Rank2Types #-} -- | -- Module : Data.Vector -- Copyright : (c) Roman Leshchinskiy 2008-2010 -- License : BSD-style -- -- Maintainer : Roman Leshchinskiy -- Stability : experimental -- Portability : non-portable -- -- A library for boxed vectors (that is, polymorphic arrays capable of -- holding any Haskell value). The vectors come in two flavors: -- -- * mutable -- -- * immutable -- -- and support a rich interface of both list-like operations, and bulk -- array operations. -- -- For unboxed arrays, use the 'Data.Vector.Unboxed' interface. -- module Data.Vector ( -- * The pure and mutable array types Vector, MVector, -- * Constructing vectors empty, singleton, cons, snoc, (++), replicate, generate, force, -- * Operations based on length information length, null, -- * Accessing individual elements (!), head, last, -- ** Accessors in a monad indexM, headM, lastM, -- ** Accessor functions with no bounds checking unsafeIndex, unsafeHead, unsafeLast, unsafeIndexM, unsafeHeadM, unsafeLastM, -- * Subvectors init, tail, take, drop, slice, -- * Subvector construction without bounds checks unsafeSlice, unsafeInit, unsafeTail, unsafeTake, unsafeDrop, -- * Permutations accum, accumulate, accumulate_, (//), update, update_, backpermute, reverse, unsafeAccum, unsafeAccumulate, unsafeAccumulate_, unsafeUpd, unsafeUpdate, unsafeUpdate_, unsafeBackpermute, -- * Mapping map, imap, concatMap, -- * Zipping and unzipping zipWith, zipWith3, zipWith4, zipWith5, zipWith6, izipWith, izipWith3, izipWith4, izipWith5, izipWith6, zip, zip3, zip4, zip5, zip6, unzip, unzip3, unzip4, unzip5, unzip6, -- * Filtering filter, ifilter, takeWhile, dropWhile, partition, unstablePartition, span, break, -- * Searching elem, notElem, find, findIndex, findIndices, elemIndex, elemIndices, -- * Folding foldl, foldl1, foldl', foldl1', foldr, foldr1, foldr', foldr1', ifoldl, ifoldl', ifoldr, ifoldr', -- * Specialised folds all, any, and, or, sum, product, maximum, maximumBy, minimum, minimumBy, minIndex, minIndexBy, maxIndex, maxIndexBy, -- * Unfolding unfoldr, unfoldrN, -- * Scans prescanl, prescanl', postscanl, postscanl', scanl, scanl', scanl1, scanl1', prescanr, prescanr', postscanr, postscanr', scanr, scanr', scanr1, scanr1', -- * Enumeration enumFromN, enumFromStepN, enumFromTo, enumFromThenTo, -- * Conversion to/from lists toList, fromList, fromListN, -- * Monadic operations replicateM, mapM, mapM_, forM, forM_, zipWithM, zipWithM_, filterM, foldM, foldM', fold1M, fold1M', -- * Destructive operations create, modify, copy, unsafeCopy ) where import qualified Data.Vector.Generic as G import Data.Vector.Mutable ( MVector(..) ) import Data.Primitive.Array import qualified Data.Vector.Fusion.Stream as Stream import Control.Monad ( liftM ) import Control.Monad.ST ( ST ) import Control.Monad.Primitive import Prelude hiding ( length, null, replicate, (++), head, last, init, tail, take, drop, reverse, map, concatMap, zipWith, zipWith3, zip, zip3, unzip, unzip3, filter, takeWhile, dropWhile, span, break, elem, notElem, foldl, foldl1, foldr, foldr1, all, any, and, or, sum, product, minimum, maximum, scanl, scanl1, scanr, scanr1, enumFromTo, enumFromThenTo, mapM, mapM_ ) import qualified Prelude import Data.Typeable ( Typeable ) import Data.Data ( Data(..) ) -- | Boxed vectors, supporting efficient slicing. data Vector a = Vector {-# UNPACK #-} !Int {-# UNPACK #-} !Int {-# UNPACK #-} !(Array a) deriving ( Typeable ) instance Show a => Show (Vector a) where show = (Prelude.++ " :: Data.Vector.Vector") . ("fromList " Prelude.++) . show . toList instance Data a => Data (Vector a) where gfoldl = G.gfoldl toConstr _ = error "toConstr" gunfold _ _ = error "gunfold" dataTypeOf _ = G.mkType "Data.Vector.Vector" dataCast1 = G.dataCast type instance G.Mutable Vector = MVector instance G.Vector Vector a where {-# INLINE unsafeFreeze #-} unsafeFreeze (MVector i n marr) = Vector i n `liftM` unsafeFreezeArray marr {-# INLINE basicLength #-} basicLength (Vector _ n _) = n {-# INLINE basicUnsafeSlice #-} basicUnsafeSlice j n (Vector i _ arr) = Vector (i+j) n arr {-# INLINE basicUnsafeIndexM #-} basicUnsafeIndexM (Vector i _ arr) j = indexArrayM arr (i+j) -- See http://trac.haskell.org/vector/ticket/12 instance Eq a => Eq (Vector a) where {-# INLINE (==) #-} xs == ys = Stream.eq (G.stream xs) (G.stream ys) {-# INLINE (/=) #-} xs /= ys = not (Stream.eq (G.stream xs) (G.stream ys)) -- See http://trac.haskell.org/vector/ticket/12 instance Ord a => Ord (Vector a) where {-# INLINE compare #-} compare xs ys = Stream.cmp (G.stream xs) (G.stream ys) {-# INLINE (<) #-} xs < ys = Stream.cmp (G.stream xs) (G.stream ys) == LT {-# INLINE (<=) #-} xs <= ys = Stream.cmp (G.stream xs) (G.stream ys) /= GT {-# INLINE (>) #-} xs > ys = Stream.cmp (G.stream xs) (G.stream ys) == GT {-# INLINE (>=) #-} xs >= ys = Stream.cmp (G.stream xs) (G.stream ys) /= LT -- Length -- ------ -- |/O(1)/. Yield the length of a vector as an 'Int' length :: Vector a -> Int {-# INLINE length #-} length = G.length -- |/O(1)/. 'null' tests whether the given array is empty. null :: Vector a -> Bool {-# INLINE null #-} null = G.null -- Construction -- ------------ -- |/O(1)/. 'empty' builds a vector of size zero. empty :: Vector a {-# INLINE empty #-} empty = G.empty -- |/O(1)/, Vector with exactly one element singleton :: a -> Vector a {-# INLINE singleton #-} singleton = G.singleton -- |/O(n)/. @'replicate' n e@ yields a vector of length @n@ storing @e@ at each position replicate :: Int -> a -> Vector a {-# INLINE replicate #-} replicate = G.replicate -- |/O(n)/, Generate a vector of the given length by applying a (pure) -- generator function to each index generate :: Int -> (Int -> a) -> Vector a {-# INLINE generate #-} generate = G.generate -- |/O(n)/, Prepend an element to an array. cons :: a -> Vector a -> Vector a {-# INLINE cons #-} cons = G.cons -- |/O(n)/, Append an element to an array. snoc :: Vector a -> a -> Vector a {-# INLINE snoc #-} snoc = G.snoc infixr 5 ++ -- |/O(n)/, Concatenate two vectors (++) :: Vector a -> Vector a -> Vector a {-# INLINE (++) #-} (++) = (G.++) -- |/O(n)/, Create a copy of a vector. -- @force@ is useful when dealing with slices, as the garbage collector -- may be able to free the original vector if no further references are held. -- force :: Vector a -> Vector a {-# INLINE force #-} force = G.force -- Accessing individual elements -- ----------------------------- -- |/O(1)/. Read the element in the vector at the given index. (!) :: Vector a -> Int -> a {-# INLINE (!) #-} (!) = (G.!) -- |/O(1)/. 'head' returns the first element of the vector head :: Vector a -> a {-# INLINE head #-} head = G.head -- |/O(n)/. 'last' yields the last element of an array. last :: Vector a -> a {-# INLINE last #-} last = G.last -- |/O(1)/, Unsafe indexing without bounds checking -- -- By not performing bounds checks, this function may be faster when -- this function is used in an inner loop) -- unsafeIndex :: Vector a -> Int -> a {-# INLINE unsafeIndex #-} unsafeIndex = G.unsafeIndex -- |/O(1)/, Yield the first element of a vector without checking if the vector is empty -- -- By not performing bounds checks, this function may be faster when -- this function is used in an inner loop) unsafeHead :: Vector a -> a {-# INLINE unsafeHead #-} unsafeHead = G.unsafeHead -- | Yield the last element of a vector without checking if the vector is empty -- -- By not performing bounds checks, this function may be faster when -- this function is used in an inner loop) unsafeLast :: Vector a -> a {-# INLINE unsafeLast #-} unsafeLast = G.unsafeLast -- | Monadic indexing which can be strict in the vector while remaining lazy in the element indexM :: Monad m => Vector a -> Int -> m a {-# INLINE indexM #-} indexM = G.indexM -- | Monadic head which can be strict in the vector while remaining lazy in the element headM :: Monad m => Vector a -> m a {-# INLINE headM #-} headM = G.headM -- | Monadic last which can be strict in the vector while remaining lazy in the element lastM :: Monad m => Vector a -> m a {-# INLINE lastM #-} lastM = G.lastM -- | Unsafe monadic indexing without bounds checks unsafeIndexM :: Monad m => Vector a -> Int -> m a {-# INLINE unsafeIndexM #-} unsafeIndexM = G.unsafeIndexM -- | Unsafe monadic head (access the first element) without bounds checks unsafeHeadM :: Monad m => Vector a -> m a {-# INLINE unsafeHeadM #-} unsafeHeadM = G.unsafeHeadM -- | Unsafe monadic last (access the last element) without bounds checks unsafeLastM :: Monad m => Vector a -> m a {-# INLINE unsafeLastM #-} unsafeLastM = G.unsafeLastM -- Subarrays -- --------- -- | /O(1)/, Yield a part of the vector without copying it. -- slice :: Int -- ^ starting index -> Int -- ^ length -> Vector a -> Vector a {-# INLINE slice #-} slice = G.slice -- |/O(1)/, Yield all but the last element without copying. init :: Vector a -> Vector a {-# INLINE init #-} init = G.init -- |/O(1), Yield all but the first element (without copying). tail :: Vector a -> Vector a {-# INLINE tail #-} tail = G.tail -- |/O(1)/, Yield the first @n@ elements without copying. take :: Int -> Vector a -> Vector a {-# INLINE take #-} take = G.take -- |/O(1)/, Yield all but the first @n@ elements without copying. drop :: Int -> Vector a -> Vector a {-# INLINE drop #-} drop = G.drop -- |/O(1)/, Unsafely yield a part of the vector without copying it and without -- performing bounds checks. unsafeSlice :: Int -- ^ starting index -> Int -- ^ length -> Vector a -> Vector a {-# INLINE unsafeSlice #-} unsafeSlice = G.unsafeSlice -- |/O(1)/, Zero-copying 'init' without bounds checks. unsafeInit :: Vector a -> Vector a {-# INLINE unsafeInit #-} unsafeInit = G.unsafeInit -- |/O(1)/, Zero-copying 'tail' without bounds checks. unsafeTail :: Vector a -> Vector a {-# INLINE unsafeTail #-} unsafeTail = G.unsafeTail -- |/O(1)/, Zero-copying 'take' without bounds checks. unsafeTake :: Int -> Vector a -> Vector a {-# INLINE unsafeTake #-} unsafeTake = G.unsafeTake -- |/O(1)/, Zero-copying 'drop' without bounds checks. unsafeDrop :: Int -> Vector a -> Vector a {-# INLINE unsafeDrop #-} unsafeDrop = G.unsafeDrop -- Permutations -- ------------ -- TODO there is no documentation for the accum* family of functions -- | TODO unsafeAccum. unsafeAccum :: (a -> b -> a) -> Vector a -> [(Int,b)] -> Vector a {-# INLINE unsafeAccum #-} unsafeAccum = G.unsafeAccum -- | TODO unsafeAccumulate unsafeAccumulate :: (a -> b -> a) -> Vector a -> Vector (Int,b) -> Vector a {-# INLINE unsafeAccumulate #-} unsafeAccumulate = G.unsafeAccumulate -- | TODO unsafeAccumulate_ unsafeAccumulate_ :: (a -> b -> a) -> Vector a -> Vector Int -> Vector b -> Vector a {-# INLINE unsafeAccumulate_ #-} unsafeAccumulate_ = G.unsafeAccumulate_ -- | TODO accum accum :: (a -> b -> a) -> Vector a -> [(Int,b)] -> Vector a {-# INLINE accum #-} accum = G.accum -- | TODO accumulate accumulate :: (a -> b -> a) -> Vector a -> Vector (Int,b) -> Vector a {-# INLINE accumulate #-} accumulate = G.accumulate -- | TODO accumulate_ accumulate_ :: (a -> b -> a) -> Vector a -> Vector Int -> Vector b -> Vector a {-# INLINE accumulate_ #-} accumulate_ = G.accumulate_ -- | TODO unsafeUpd unsafeUpd :: Vector a -> [(Int, a)] -> Vector a {-# INLINE unsafeUpd #-} unsafeUpd = G.unsafeUpd -- | TODO unsafeUpdate unsafeUpdate :: Vector a -> Vector (Int, a) -> Vector a {-# INLINE unsafeUpdate #-} unsafeUpdate = G.unsafeUpdate -- | TODO unsafeUpdate_ unsafeUpdate_ :: Vector a -> Vector Int -> Vector a -> Vector a {-# INLINE unsafeUpdate_ #-} unsafeUpdate_ = G.unsafeUpdate_ -- | TODO (//) (//) :: Vector a -> [(Int, a)] -> Vector a {-# INLINE (//) #-} (//) = (G.//) -- | TODO update update :: Vector a -> Vector (Int, a) -> Vector a {-# INLINE update #-} update = G.update -- | TODO update_ update_ :: Vector a -> Vector Int -> Vector a -> Vector a {-# INLINE update_ #-} update_ = G.update_ -- | backpermute, courtesy Blelloch. The back-permute is a gather\/get operation. backpermute :: Vector a -> Vector Int -> Vector a {-# INLINE backpermute #-} backpermute = G.backpermute -- | TODO unsafeBackpermute unsafeBackpermute :: Vector a -> Vector Int -> Vector a {-# INLINE unsafeBackpermute #-} unsafeBackpermute = G.unsafeBackpermute -- | /O(n)/, reverse the elements of the given vector. reverse :: Vector a -> Vector a {-# INLINE reverse #-} reverse = G.reverse -- Mapping -- ------- -- | /O(n)/, Map a function over a vector map :: (a -> b) -> Vector a -> Vector b {-# INLINE map #-} map = G.map -- | /O(n)/, Apply a function to every index/value pair yielding a new vector imap :: (Int -> a -> b) -> Vector a -> Vector b {-# INLINE imap #-} imap = G.imap -- | /O(n)/, generate a vector from each element of the input vector, then join the results. concatMap :: (a -> Vector b) -> Vector a -> Vector b {-# INLINE concatMap #-} concatMap = G.concatMap -- Zipping/unzipping -- ----------------- -- |/O(n)/, Zip two vectors with the given function. zipWith :: (a -> b -> c) -> Vector a -> Vector b -> Vector c {-# INLINE zipWith #-} zipWith = G.zipWith -- |/O(n)/, Zip three vectors with the given function. zipWith3 :: (a -> b -> c -> d) -> Vector a -> Vector b -> Vector c -> Vector d {-# INLINE zipWith3 #-} zipWith3 = G.zipWith3 -- |/O(n)/, Zip four vectors with the given function. zipWith4 :: (a -> b -> c -> d -> e) -> Vector a -> Vector b -> Vector c -> Vector d -> Vector e {-# INLINE zipWith4 #-} zipWith4 = G.zipWith4 -- |/O(n)/, Zip five vectors with the given function. zipWith5 :: (a -> b -> c -> d -> e -> f) -> Vector a -> Vector b -> Vector c -> Vector d -> Vector e -> Vector f {-# INLINE zipWith5 #-} zipWith5 = G.zipWith5 -- |/O(n)/, Zip six vectors with the given function. zipWith6 :: (a -> b -> c -> d -> e -> f -> g) -> Vector a -> Vector b -> Vector c -> Vector d -> Vector e -> Vector f -> Vector g {-# INLINE zipWith6 #-} zipWith6 = G.zipWith6 -- |/O(n)/, Zip two vectors and their indices with the given function. izipWith :: (Int -> a -> b -> c) -> Vector a -> Vector b -> Vector c {-# INLINE izipWith #-} izipWith = G.izipWith -- |/O(n)/, Zip three vectors and their indices with the given function. izipWith3 :: (Int -> a -> b -> c -> d) -> Vector a -> Vector b -> Vector c -> Vector d {-# INLINE izipWith3 #-} izipWith3 = G.izipWith3 -- |/O(n)/, Zip four vectors and their indices with the given function. izipWith4 :: (Int -> a -> b -> c -> d -> e) -> Vector a -> Vector b -> Vector c -> Vector d -> Vector e {-# INLINE izipWith4 #-} izipWith4 = G.izipWith4 -- |/O(n)/, Zip five vectors and their indices with the given function. izipWith5 :: (Int -> a -> b -> c -> d -> e -> f) -> Vector a -> Vector b -> Vector c -> Vector d -> Vector e -> Vector f {-# INLINE izipWith5 #-} izipWith5 = G.izipWith5 -- |/O(n)/, Zip six vectors and their indices with the given function. izipWith6 :: (Int -> a -> b -> c -> d -> e -> f -> g) -> Vector a -> Vector b -> Vector c -> Vector d -> Vector e -> Vector f -> Vector g {-# INLINE izipWith6 #-} izipWith6 = G.izipWith6 -- | Elementwise pairing of array elements. zip :: Vector a -> Vector b -> Vector (a, b) {-# INLINE zip #-} zip = G.zip -- | zip together three vectors into a vector of triples zip3 :: Vector a -> Vector b -> Vector c -> Vector (a, b, c) {-# INLINE zip3 #-} zip3 = G.zip3 zip4 :: Vector a -> Vector b -> Vector c -> Vector d -> Vector (a, b, c, d) {-# INLINE zip4 #-} zip4 = G.zip4 zip5 :: Vector a -> Vector b -> Vector c -> Vector d -> Vector e -> Vector (a, b, c, d, e) {-# INLINE zip5 #-} zip5 = G.zip5 zip6 :: Vector a -> Vector b -> Vector c -> Vector d -> Vector e -> Vector f -> Vector (a, b, c, d, e, f) {-# INLINE zip6 #-} zip6 = G.zip6 -- | Elementwise unpairing of array elements. unzip :: Vector (a, b) -> (Vector a, Vector b) {-# INLINE unzip #-} unzip = G.unzip unzip3 :: Vector (a, b, c) -> (Vector a, Vector b, Vector c) {-# INLINE unzip3 #-} unzip3 = G.unzip3 unzip4 :: Vector (a, b, c, d) -> (Vector a, Vector b, Vector c, Vector d) {-# INLINE unzip4 #-} unzip4 = G.unzip4 unzip5 :: Vector (a, b, c, d, e) -> (Vector a, Vector b, Vector c, Vector d, Vector e) {-# INLINE unzip5 #-} unzip5 = G.unzip5 unzip6 :: Vector (a, b, c, d, e, f) -> (Vector a, Vector b, Vector c, Vector d, Vector e, Vector f) {-# INLINE unzip6 #-} unzip6 = G.unzip6 -- Filtering -- --------- -- |/O(n)/, Remove elements from the vector which do not satisfy the predicate filter :: (a -> Bool) -> Vector a -> Vector a {-# INLINE filter #-} filter = G.filter -- |/O(n)/, Drop elements that do not satisfy the predicate (applied to values and -- their indices) ifilter :: (Int -> a -> Bool) -> Vector a -> Vector a {-# INLINE ifilter #-} ifilter = G.ifilter -- |/O(n)/, Yield the longest prefix of elements satisfying the predicate. takeWhile :: (a -> Bool) -> Vector a -> Vector a {-# INLINE takeWhile #-} takeWhile = G.takeWhile -- |/O(n)/, Drop the longest prefix of elements that satisfy the predicate. dropWhile :: (a -> Bool) -> Vector a -> Vector a {-# INLINE dropWhile #-} dropWhile = G.dropWhile -- | Split the vector in two parts, the first one containing those elements -- that satisfy the predicate and the second one those that don't. The -- relative order of the elements is preserved at the cost of a (sometimes) -- reduced performance compared to 'unstablePartition'. partition :: (a -> Bool) -> Vector a -> (Vector a, Vector a) {-# INLINE partition #-} partition = G.partition -- |/O(n)/, Split the vector in two parts, the first one containing those elements -- that satisfy the predicate and the second one those that don't. The order -- of the elements is not preserved. unstablePartition :: (a -> Bool) -> Vector a -> (Vector a, Vector a) {-# INLINE unstablePartition #-} unstablePartition = G.unstablePartition -- |/O(n)/, Split the vector into the longest prefix of elements that satisfy the -- predicate and the rest. span :: (a -> Bool) -> Vector a -> (Vector a, Vector a) {-# INLINE span #-} span = G.span -- | Split the vector into the longest prefix of elements that do not satisfy -- the predicate and the rest. break :: (a -> Bool) -> Vector a -> (Vector a, Vector a) {-# INLINE break #-} break = G.break -- Searching -- --------- infix 4 `elem` -- | Check whether the vector contains an element elem :: Eq a => a -> Vector a -> Bool {-# INLINE elem #-} elem = G.elem infix 4 `notElem` -- | Inverse of `elem` notElem :: Eq a => a -> Vector a -> Bool {-# INLINE notElem #-} notElem = G.notElem -- | Yield 'Just' the first element matching the predicate or 'Nothing' if no -- such element exists. find :: (a -> Bool) -> Vector a -> Maybe a {-# INLINE find #-} find = G.find -- | Yield 'Just' the index of the first element matching the predicate or -- 'Nothing' if no such element exists. findIndex :: (a -> Bool) -> Vector a -> Maybe Int {-# INLINE findIndex #-} findIndex = G.findIndex -- | Yield the indices of elements satisfying the predicate findIndices :: (a -> Bool) -> Vector a -> Vector Int {-# INLINE findIndices #-} findIndices = G.findIndices -- | Yield 'Just' the index of the first occurence of the given element or -- 'Nothing' if the vector does not contain the element elemIndex :: Eq a => a -> Vector a -> Maybe Int {-# INLINE elemIndex #-} elemIndex = G.elemIndex -- | Yield the indices of all occurences of the given element elemIndices :: Eq a => a -> Vector a -> Vector Int {-# INLINE elemIndices #-} elemIndices = G.elemIndices -- Folding -- ------- -- | Left fold foldl :: (a -> b -> a) -> a -> Vector b -> a {-# INLINE foldl #-} foldl = G.foldl -- | Left fold on non-empty vectors foldl1 :: (a -> a -> a) -> Vector a -> a {-# INLINE foldl1 #-} foldl1 = G.foldl1 -- | Left fold with strict accumulator foldl' :: (a -> b -> a) -> a -> Vector b -> a {-# INLINE foldl' #-} foldl' = G.foldl' -- | Left fold on non-empty vectors with strict accumulator foldl1' :: (a -> a -> a) -> Vector a -> a {-# INLINE foldl1' #-} foldl1' = G.foldl1' -- | Right fold foldr :: (a -> b -> b) -> b -> Vector a -> b {-# INLINE foldr #-} foldr = G.foldr -- | Right fold on non-empty vectors foldr1 :: (a -> a -> a) -> Vector a -> a {-# INLINE foldr1 #-} foldr1 = G.foldr1 -- | Right fold with a strict accumulator foldr' :: (a -> b -> b) -> b -> Vector a -> b {-# INLINE foldr' #-} foldr' = G.foldr' -- | Right fold on non-empty vectors with strict accumulator foldr1' :: (a -> a -> a) -> Vector a -> a {-# INLINE foldr1' #-} foldr1' = G.foldr1' -- | Left fold (function applied to each element and its index) ifoldl :: (a -> Int -> b -> a) -> a -> Vector b -> a {-# INLINE ifoldl #-} ifoldl = G.ifoldl -- | Left fold with strict accumulator (function applied to each element and -- its index) ifoldl' :: (a -> Int -> b -> a) -> a -> Vector b -> a {-# INLINE ifoldl' #-} ifoldl' = G.ifoldl' -- | Right fold (function applied to each element and its index) ifoldr :: (Int -> a -> b -> b) -> b -> Vector a -> b {-# INLINE ifoldr #-} ifoldr = G.ifoldr -- | Right fold with strict accumulator (function applied to each element and -- its index) ifoldr' :: (Int -> a -> b -> b) -> b -> Vector a -> b {-# INLINE ifoldr' #-} ifoldr' = G.ifoldr' -- Specialised folds -- ----------------- -- |/O(n)/. @'all' p u@ determines whether all elements in array @u@ satisfy -- predicate @p@. all :: (a -> Bool) -> Vector a -> Bool {-# INLINE all #-} all = G.all -- |/O(n)/. @'any' p u@ determines whether any element in array @u@ satisfies -- predicate @p@. any :: (a -> Bool) -> Vector a -> Bool {-# INLINE any #-} any = G.any -- |/O(n)/. 'and' yields the conjunction of a boolean array. and :: Vector Bool -> Bool {-# INLINE and #-} and = G.and -- |/O(n)/. 'or' yields the disjunction of a boolean array. or :: Vector Bool -> Bool {-# INLINE or #-} or = G.or -- |/O(n)/. 'sum' computes the sum (with @(+)@) of an array of elements. sum :: Num a => Vector a -> a {-# INLINE sum #-} sum = G.sum -- |/O(n)/. 'sum' computes the product (with @(*)@) of an array of elements. product :: Num a => Vector a -> a {-# INLINE product #-} product = G.product -- |/O(n)/. 'maximum' finds the maximum element in an array of orderable elements. maximum :: Ord a => Vector a -> a {-# INLINE maximum #-} maximum = G.maximum -- |/O(n)/. 'maximumBy' finds the maximum element in an array under the given ordering. maximumBy :: (a -> a -> Ordering) -> Vector a -> a {-# INLINE maximumBy #-} maximumBy = G.maximumBy -- |/O(n)/. 'minimum' finds the minimum element in an array of orderable elements. minimum :: Ord a => Vector a -> a {-# INLINE minimum #-} minimum = G.minimum -- |/O(n)/. 'minimumBy' finds the minimum element in an array under the given ordering. minimumBy :: (a -> a -> Ordering) -> Vector a -> a {-# INLINE minimumBy #-} minimumBy = G.minimumBy -- | TODO maxIndex maxIndex :: Ord a => Vector a -> Int {-# INLINE maxIndex #-} maxIndex = G.maxIndex -- | TODO maxIndexBy maxIndexBy :: (a -> a -> Ordering) -> Vector a -> Int {-# INLINE maxIndexBy #-} maxIndexBy = G.maxIndexBy -- | TODO minIndex minIndex :: Ord a => Vector a -> Int {-# INLINE minIndex #-} minIndex = G.minIndex -- | TODO minIndexBy minIndexBy :: (a -> a -> Ordering) -> Vector a -> Int {-# INLINE minIndexBy #-} minIndexBy = G.minIndexBy -- Unfolding -- --------- -- | The 'unfoldr' function is a \`dual\' to 'foldr': while 'foldr' -- reduces a vector to a summary value, 'unfoldr' builds a list from -- a seed value. The function takes the element and returns 'Nothing' -- if it is done generating the vector or returns 'Just' @(a,b)@, in which -- case, @a@ is a prepended to the vector and @b@ is used as the next -- element in a recursive call. -- -- A simple use of unfoldr: -- -- > unfoldr (\b -> if b == 0 then Nothing else Just (b, b-1)) 10 -- > [10,9,8,7,6,5,4,3,2,1] -- unfoldr :: (b -> Maybe (a, b)) -> b -> Vector a {-# INLINE unfoldr #-} unfoldr = G.unfoldr -- | Unfold at most @n@ elements unfoldrN :: Int -> (b -> Maybe (a, b)) -> b -> Vector a {-# INLINE unfoldrN #-} unfoldrN = G.unfoldrN -- Scans -- ----- -- | Prefix scan prescanl :: (a -> b -> a) -> a -> Vector b -> Vector a {-# INLINE prescanl #-} prescanl = G.prescanl -- | Prefix scan with strict accumulator prescanl' :: (a -> b -> a) -> a -> Vector b -> Vector a {-# INLINE prescanl' #-} prescanl' = G.prescanl' -- | Suffix scan postscanl :: (a -> b -> a) -> a -> Vector b -> Vector a {-# INLINE postscanl #-} postscanl = G.postscanl -- | Suffix scan with strict accumulator postscanl' :: (a -> b -> a) -> a -> Vector b -> Vector a {-# INLINE postscanl' #-} postscanl' = G.postscanl' -- | Haskell-style scan function. scanl :: (a -> b -> a) -> a -> Vector b -> Vector a {-# INLINE scanl #-} scanl = G.scanl -- | Haskell-style scan with strict accumulator scanl' :: (a -> b -> a) -> a -> Vector b -> Vector a {-# INLINE scanl' #-} scanl' = G.scanl' -- | Scan over a non-empty 'Vector' scanl1 :: (a -> a -> a) -> Vector a -> Vector a {-# INLINE scanl1 #-} scanl1 = G.scanl1 -- | Scan over a non-empty 'Vector' with a strict accumulator scanl1' :: (a -> a -> a) -> Vector a -> Vector a {-# INLINE scanl1' #-} scanl1' = G.scanl1' -- | Prefix right-to-left scan prescanr :: (a -> b -> b) -> b -> Vector a -> Vector b {-# INLINE prescanr #-} prescanr = G.prescanr -- | Prefix right-to-left scan with strict accumulator prescanr' :: (a -> b -> b) -> b -> Vector a -> Vector b {-# INLINE prescanr' #-} prescanr' = G.prescanr' -- | Suffix right-to-left scan postscanr :: (a -> b -> b) -> b -> Vector a -> Vector b {-# INLINE postscanr #-} postscanr = G.postscanr -- | Suffix right-to-left scan with strict accumulator postscanr' :: (a -> b -> b) -> b -> Vector a -> Vector b {-# INLINE postscanr' #-} postscanr' = G.postscanr' -- | Haskell-style right-to-left scan scanr :: (a -> b -> b) -> b -> Vector a -> Vector b {-# INLINE scanr #-} scanr = G.scanr -- | Haskell-style right-to-left scan with strict accumulator scanr' :: (a -> b -> b) -> b -> Vector a -> Vector b {-# INLINE scanr' #-} scanr' = G.scanr' -- | Right-to-left scan over a non-empty vector scanr1 :: (a -> a -> a) -> Vector a -> Vector a {-# INLINE scanr1 #-} scanr1 = G.scanr1 -- | Right-to-left scan over a non-empty vector with a strict accumulator scanr1' :: (a -> a -> a) -> Vector a -> Vector a {-# INLINE scanr1' #-} scanr1' = G.scanr1' -- Enumeration -- ----------- -- | Yield a vector of the given length containing the values @x@, @x+1@ etc. -- This operation is usually more efficient than 'enumFromTo'. enumFromN :: Num a => a -> Int -> Vector a {-# INLINE enumFromN #-} enumFromN = G.enumFromN -- | Yield a vector of the given length containing the values @x@, @x+y@, -- @x+y+y@ etc. This operations is usually more efficient than -- 'enumFromThenTo'. enumFromStepN :: Num a => a -> a -> Int -> Vector a {-# INLINE enumFromStepN #-} enumFromStepN = G.enumFromStepN -- | Enumerate values from @x@ to @y@. -- -- /WARNING:/ This operation can be very inefficient. If at all possible, use -- 'enumFromN' instead. enumFromTo :: Enum a => a -> a -> Vector a {-# INLINE enumFromTo #-} enumFromTo = G.enumFromTo -- | Enumerate values from @x@ to @y@ with a specific step @z@. -- -- /WARNING:/ This operation can be very inefficient. If at all possible, use -- 'enumFromStepN' instead. enumFromThenTo :: Enum a => a -> a -> a -> Vector a {-# INLINE enumFromThenTo #-} enumFromThenTo = G.enumFromThenTo -- Conversion to/from lists -- ------------------------ -- | Convert a vector to a list toList :: Vector a -> [a] {-# INLINE toList #-} toList = G.toList -- | Convert a list to a vector fromList :: [a] -> Vector a {-# INLINE fromList #-} fromList = G.fromList -- | Convert the first @n@ elements of a list to a vector -- -- > fromListN n xs = fromList (take n xs) fromListN :: Int -> [a] -> Vector a {-# INLINE fromListN #-} fromListN = G.fromListN -- Monadic operations -- ------------------ -- | Perform the monadic action the given number of times and store the -- results in a vector. replicateM :: Monad m => Int -> m a -> m (Vector a) {-# INLINE replicateM #-} replicateM = G.replicateM -- | Apply the monadic action to all elements of the vector, yielding a vector -- of results mapM :: Monad m => (a -> m b) -> Vector a -> m (Vector b) {-# INLINE mapM #-} mapM = G.mapM -- | Apply the monadic action to all elements of a vector and ignore the -- results mapM_ :: Monad m => (a -> m b) -> Vector a -> m () {-# INLINE mapM_ #-} mapM_ = G.mapM_ -- | Apply the monadic action to all elements of the vector, yielding a vector -- of results forM :: Monad m => Vector a -> (a -> m b) -> m (Vector b) {-# INLINE forM #-} forM = G.forM -- | Apply the monadic action to all elements of a vector and ignore the -- results forM_ :: Monad m => Vector a -> (a -> m b) -> m () {-# INLINE forM_ #-} forM_ = G.forM_ -- | Zip the two vectors with the monadic action and yield a vector of results zipWithM :: Monad m => (a -> b -> m c) -> Vector a -> Vector b -> m (Vector c) {-# INLINE zipWithM #-} zipWithM = G.zipWithM -- | Zip the two vectors with the monadic action and ignore the results zipWithM_ :: Monad m => (a -> b -> m c) -> Vector a -> Vector b -> m () {-# INLINE zipWithM_ #-} zipWithM_ = G.zipWithM_ -- | Drop elements that do not satisfy the monadic predicate filterM :: Monad m => (a -> m Bool) -> Vector a -> m (Vector a) {-# INLINE filterM #-} filterM = G.filterM -- | Monadic fold foldM :: Monad m => (a -> b -> m a) -> a -> Vector b -> m a {-# INLINE foldM #-} foldM = G.foldM -- | Monadic fold over non-empty vectors fold1M :: Monad m => (a -> a -> m a) -> Vector a -> m a {-# INLINE fold1M #-} fold1M = G.fold1M -- | Monadic fold with strict accumulator foldM' :: Monad m => (a -> b -> m a) -> a -> Vector b -> m a {-# INLINE foldM' #-} foldM' = G.foldM' -- | Monad fold over non-empty vectors with strict accumulator fold1M' :: Monad m => (a -> a -> m a) -> Vector a -> m a {-# INLINE fold1M' #-} fold1M' = G.fold1M' -- Destructive operations -- ---------------------- -- | Destructively initialise a vector. create :: (forall s. ST s (MVector s a)) -> Vector a {-# INLINE create #-} create = G.create -- | Apply a destructive operation to a vector. The operation is applied to a -- copy of the vector unless it can be safely performed in place. modify :: (forall s. MVector s a -> ST s ()) -> Vector a -> Vector a {-# INLINE modify #-} modify = G.modify -- | Copy an immutable vector into a mutable one. The two vectors must have -- the same length. This is not checked. unsafeCopy :: PrimMonad m => MVector (PrimState m) a -> Vector a -> m () {-# INLINE unsafeCopy #-} unsafeCopy = G.unsafeCopy -- | Copy an immutable vector into a mutable one. The two vectors must have the -- same length. copy :: PrimMonad m => MVector (PrimState m) a -> Vector a -> m () {-# INLINE copy #-} copy = G.copy