{-# LANGUAGE MultiParamTypeClasses, FlexibleInstances, TypeFamilies, Rank2Types #-} -- | -- Module : Data.Vector.Storable -- Copyright : (c) Roman Leshchinskiy 2009-2010 -- License : BSD-style -- -- Maintainer : Roman Leshchinskiy -- Stability : experimental -- Portability : non-portable -- -- 'Storable'-based vectors. -- module Data.Vector.Storable ( Vector, MVector(..), Storable, -- * Length information length, null, -- * Construction empty, singleton, cons, snoc, replicate, generate, (++), force, -- * Accessing individual elements (!), head, last, indexM, headM, lastM, unsafeIndex, unsafeHead, unsafeLast, unsafeIndexM, unsafeHeadM, unsafeLastM, -- * Subvectors slice, init, tail, take, drop, unsafeSlice, unsafeInit, unsafeTail, unsafeTake, unsafeDrop, -- * Permutations accum, accumulate_, (//), update_, backpermute, reverse, unsafeAccum, unsafeAccumulate_, unsafeUpd, unsafeUpdate_, unsafeBackpermute, -- * Mapping map, imap, concatMap, -- * Zipping and unzipping zipWith, zipWith3, zipWith4, zipWith5, zipWith6, izipWith, izipWith3, izipWith4, izipWith5, izipWith6, -- * Filtering filter, ifilter, takeWhile, dropWhile, partition, unstablePartition, span, break, -- * Searching elem, notElem, find, findIndex, findIndices, elemIndex, elemIndices, -- * Folding foldl, foldl1, foldl', foldl1', foldr, foldr1, foldr', foldr1', ifoldl, ifoldl', ifoldr, ifoldr', -- * Specialised folds all, any, and, or, sum, product, maximum, maximumBy, minimum, minimumBy, minIndex, minIndexBy, maxIndex, maxIndexBy, -- * Unfolding unfoldr, unfoldrN, -- * Scans prescanl, prescanl', postscanl, postscanl', scanl, scanl', scanl1, scanl1', prescanr, prescanr', postscanr, postscanr', scanr, scanr', scanr1, scanr1', -- * Enumeration enumFromN, enumFromStepN, enumFromTo, enumFromThenTo, -- * Conversion to/from lists toList, fromList, fromListN, -- * Monadic operations replicateM, mapM, mapM_, forM, forM_, zipWithM, zipWithM_, filterM, foldM, foldM', fold1M, fold1M', -- * Destructive operations create, modify, copy, unsafeCopy, -- * Accessing the underlying memory unsafeFromForeignPtr, unsafeToForeignPtr, unsafeWith ) where import qualified Data.Vector.Generic as G import Data.Vector.Storable.Mutable ( MVector(..) ) import Data.Vector.Storable.Internal import qualified Data.Vector.Fusion.Stream as Stream import Foreign.Storable import Foreign.ForeignPtr import Foreign.Ptr import Foreign.Marshal.Array ( advancePtr, copyArray ) import Control.Monad.ST ( ST ) import Control.Monad.Primitive import Prelude hiding ( length, null, replicate, (++), head, last, init, tail, take, drop, reverse, map, concatMap, zipWith, zipWith3, zip, zip3, unzip, unzip3, filter, takeWhile, dropWhile, span, break, elem, notElem, foldl, foldl1, foldr, foldr1, all, any, and, or, sum, product, minimum, maximum, scanl, scanl1, scanr, scanr1, enumFromTo, enumFromThenTo, mapM, mapM_ ) import qualified Prelude import Data.Typeable ( Typeable ) import Data.Data ( Data(..) ) #include "vector.h" -- | 'Storable'-based vectors data Vector a = Vector {-# UNPACK #-} !(Ptr a) {-# UNPACK #-} !Int {-# UNPACK #-} !(ForeignPtr a) deriving ( Typeable ) instance (Show a, Storable a) => Show (Vector a) where show = (Prelude.++ " :: Data.Vector.Storable.Vector") . ("fromList " Prelude.++) . show . toList instance (Data a, Storable a) => Data (Vector a) where gfoldl = G.gfoldl toConstr _ = error "toConstr" gunfold _ _ = error "gunfold" dataTypeOf _ = G.mkType "Data.Vector.Storable.Vector" dataCast1 = G.dataCast type instance G.Mutable Vector = MVector instance Storable a => G.Vector Vector a where {-# INLINE unsafeFreeze #-} unsafeFreeze (MVector p n fp) = return $ Vector p n fp {-# INLINE basicLength #-} basicLength (Vector _ n _) = n {-# INLINE basicUnsafeSlice #-} basicUnsafeSlice i n (Vector p _ fp) = Vector (p `advancePtr` i) n fp {-# INLINE basicUnsafeIndexM #-} basicUnsafeIndexM (Vector p _ fp) i = return . unsafeInlineIO $ withForeignPtr fp $ \_ -> peekElemOff p i {-# INLINE basicUnsafeCopy #-} basicUnsafeCopy (MVector p n fp) (Vector q _ fq) = unsafePrimToPrim $ withForeignPtr fp $ \_ -> withForeignPtr fq $ \_ -> copyArray p q n {-# INLINE elemseq #-} elemseq _ = seq -- See http://trac.haskell.org/vector/ticket/12 instance (Storable a, Eq a) => Eq (Vector a) where {-# INLINE (==) #-} xs == ys = Stream.eq (G.stream xs) (G.stream ys) {-# INLINE (/=) #-} xs /= ys = not (Stream.eq (G.stream xs) (G.stream ys)) -- See http://trac.haskell.org/vector/ticket/12 instance (Storable a, Ord a) => Ord (Vector a) where {-# INLINE compare #-} compare xs ys = Stream.cmp (G.stream xs) (G.stream ys) {-# INLINE (<) #-} xs < ys = Stream.cmp (G.stream xs) (G.stream ys) == LT {-# INLINE (<=) #-} xs <= ys = Stream.cmp (G.stream xs) (G.stream ys) /= GT {-# INLINE (>) #-} xs > ys = Stream.cmp (G.stream xs) (G.stream ys) == GT {-# INLINE (>=) #-} xs >= ys = Stream.cmp (G.stream xs) (G.stream ys) /= LT {- eq_memcmp :: forall a. Storable a => Vector a -> Vector a -> Bool {-# INLINE_STREAM eq_memcmp #-} eq_memcmp (Vector i m p) (Vector j n q) = m == n && inlinePerformIO (withForeignPtr p $ \p' -> withForeignPtr q $ \q' -> return $ memcmp (p' `plusPtr` i) (q' `plusPtr` j) (fromIntegral $ sizeOf (undefined :: a) * m) == 0) foreign import ccall unsafe "string.h memcmp" memcmp :: Ptr a -> Ptr a -> CSize -> CInt {-# RULES "(==) [Vector.Storable Int]" G.eq = eq_memcmp :: Vector Int -> Vector Int -> Bool #-} -} -- Length -- ------ length :: Storable a => Vector a -> Int {-# INLINE length #-} length = G.length null :: Storable a => Vector a -> Bool {-# INLINE null #-} null = G.null -- Construction -- ------------ -- | Empty vector empty :: Storable a => Vector a {-# INLINE empty #-} empty = G.empty -- | Vector with exaclty one element singleton :: Storable a => a -> Vector a {-# INLINE singleton #-} singleton = G.singleton -- | Vector of the given length with the given value in each position replicate :: Storable a => Int -> a -> Vector a {-# INLINE replicate #-} replicate = G.replicate -- | Generate a vector of the given length by applying the function to each -- index generate :: Storable a => Int -> (Int -> a) -> Vector a {-# INLINE generate #-} generate = G.generate -- | Prepend an element cons :: Storable a => a -> Vector a -> Vector a {-# INLINE cons #-} cons = G.cons -- | Append an element snoc :: Storable a => Vector a -> a -> Vector a {-# INLINE snoc #-} snoc = G.snoc infixr 5 ++ -- | Concatenate two vectors (++) :: Storable a => Vector a -> Vector a -> Vector a {-# INLINE (++) #-} (++) = (G.++) -- | Create a copy of a vector. Useful when dealing with slices. force :: Storable a => Vector a -> Vector a {-# INLINE force #-} force = G.force -- Accessing individual elements -- ----------------------------- -- | Indexing (!) :: Storable a => Vector a -> Int -> a {-# INLINE (!) #-} (!) = (G.!) -- | First element head :: Storable a => Vector a -> a {-# INLINE head #-} head = G.head -- | Last element last :: Storable a => Vector a -> a {-# INLINE last #-} last = G.last -- | Unsafe indexing without bounds checking unsafeIndex :: Storable a => Vector a -> Int -> a {-# INLINE unsafeIndex #-} unsafeIndex = G.unsafeIndex -- | Yield the first element of a vector without checking if the vector is -- empty unsafeHead :: Storable a => Vector a -> a {-# INLINE unsafeHead #-} unsafeHead = G.unsafeHead -- | Yield the last element of a vector without checking if the vector is -- empty unsafeLast :: Storable a => Vector a -> a {-# INLINE unsafeLast #-} unsafeLast = G.unsafeLast -- | Monadic indexing which can be strict in the vector while remaining lazy in -- the element indexM :: (Storable a, Monad m) => Vector a -> Int -> m a {-# INLINE indexM #-} indexM = G.indexM headM :: (Storable a, Monad m) => Vector a -> m a {-# INLINE headM #-} headM = G.headM lastM :: (Storable a, Monad m) => Vector a -> m a {-# INLINE lastM #-} lastM = G.lastM -- | Unsafe monadic indexing without bounds checks unsafeIndexM :: (Storable a, Monad m) => Vector a -> Int -> m a {-# INLINE unsafeIndexM #-} unsafeIndexM = G.unsafeIndexM unsafeHeadM :: (Storable a, Monad m) => Vector a -> m a {-# INLINE unsafeHeadM #-} unsafeHeadM = G.unsafeHeadM unsafeLastM :: (Storable a, Monad m) => Vector a -> m a {-# INLINE unsafeLastM #-} unsafeLastM = G.unsafeLastM -- Subarrays -- --------- -- | Yield a part of the vector without copying it. Safer version of -- 'basicUnsafeSlice'. slice :: Storable a => Int -- ^ starting index -> Int -- ^ length -> Vector a -> Vector a {-# INLINE slice #-} slice = G.slice -- | Yield all but the last element without copying. init :: Storable a => Vector a -> Vector a {-# INLINE init #-} init = G.init -- | All but the first element (without copying). tail :: Storable a => Vector a -> Vector a {-# INLINE tail #-} tail = G.tail -- | Yield the first @n@ elements without copying. take :: Storable a => Int -> Vector a -> Vector a {-# INLINE take #-} take = G.take -- | Yield all but the first @n@ elements without copying. drop :: Storable a => Int -> Vector a -> Vector a {-# INLINE drop #-} drop = G.drop -- | Unsafely yield a part of the vector without copying it and without -- performing bounds checks. unsafeSlice :: Storable a => Int -- ^ starting index -> Int -- ^ length -> Vector a -> Vector a {-# INLINE unsafeSlice #-} unsafeSlice = G.unsafeSlice unsafeInit :: Storable a => Vector a -> Vector a {-# INLINE unsafeInit #-} unsafeInit = G.unsafeInit unsafeTail :: Storable a => Vector a -> Vector a {-# INLINE unsafeTail #-} unsafeTail = G.unsafeTail unsafeTake :: Storable a => Int -> Vector a -> Vector a {-# INLINE unsafeTake #-} unsafeTake = G.unsafeTake unsafeDrop :: Storable a => Int -> Vector a -> Vector a {-# INLINE unsafeDrop #-} unsafeDrop = G.unsafeDrop -- Permutations -- ------------ unsafeAccum :: Storable a => (a -> b -> a) -> Vector a -> [(Int,b)] -> Vector a {-# INLINE unsafeAccum #-} unsafeAccum = G.unsafeAccum unsafeAccumulate_ :: (Storable a, Storable b) => (a -> b -> a) -> Vector a -> Vector Int -> Vector b -> Vector a {-# INLINE unsafeAccumulate_ #-} unsafeAccumulate_ = G.unsafeAccumulate_ accum :: Storable a => (a -> b -> a) -> Vector a -> [(Int,b)] -> Vector a {-# INLINE accum #-} accum = G.accum accumulate_ :: (Storable a, Storable b) => (a -> b -> a) -> Vector a -> Vector Int -> Vector b -> Vector a {-# INLINE accumulate_ #-} accumulate_ = G.accumulate_ unsafeUpd :: Storable a => Vector a -> [(Int, a)] -> Vector a {-# INLINE unsafeUpd #-} unsafeUpd = G.unsafeUpd unsafeUpdate_ :: Storable a => Vector a -> Vector Int -> Vector a -> Vector a {-# INLINE unsafeUpdate_ #-} unsafeUpdate_ = G.unsafeUpdate_ (//) :: Storable a => Vector a -> [(Int, a)] -> Vector a {-# INLINE (//) #-} (//) = (G.//) update_ :: Storable a => Vector a -> Vector Int -> Vector a -> Vector a {-# INLINE update_ #-} update_ = G.update_ backpermute :: Storable a => Vector a -> Vector Int -> Vector a {-# INLINE backpermute #-} backpermute = G.backpermute unsafeBackpermute :: Storable a => Vector a -> Vector Int -> Vector a {-# INLINE unsafeBackpermute #-} unsafeBackpermute = G.unsafeBackpermute reverse :: Storable a => Vector a -> Vector a {-# INLINE reverse #-} reverse = G.reverse -- Mapping -- ------- -- | Map a function over a vector map :: (Storable a, Storable b) => (a -> b) -> Vector a -> Vector b {-# INLINE map #-} map = G.map -- | Apply a function to every index/value pair imap :: (Storable a, Storable b) => (Int -> a -> b) -> Vector a -> Vector b {-# INLINE imap #-} imap = G.imap concatMap :: (Storable a, Storable b) => (a -> Vector b) -> Vector a -> Vector b {-# INLINE concatMap #-} concatMap = G.concatMap -- Zipping/unzipping -- ----------------- -- | Zip two vectors with the given function. zipWith :: (Storable a, Storable b, Storable c) => (a -> b -> c) -> Vector a -> Vector b -> Vector c {-# INLINE zipWith #-} zipWith = G.zipWith -- | Zip three vectors with the given function. zipWith3 :: (Storable a, Storable b, Storable c, Storable d) => (a -> b -> c -> d) -> Vector a -> Vector b -> Vector c -> Vector d {-# INLINE zipWith3 #-} zipWith3 = G.zipWith3 zipWith4 :: (Storable a, Storable b, Storable c, Storable d, Storable e) => (a -> b -> c -> d -> e) -> Vector a -> Vector b -> Vector c -> Vector d -> Vector e {-# INLINE zipWith4 #-} zipWith4 = G.zipWith4 zipWith5 :: (Storable a, Storable b, Storable c, Storable d, Storable e, Storable f) => (a -> b -> c -> d -> e -> f) -> Vector a -> Vector b -> Vector c -> Vector d -> Vector e -> Vector f {-# INLINE zipWith5 #-} zipWith5 = G.zipWith5 zipWith6 :: (Storable a, Storable b, Storable c, Storable d, Storable e, Storable f, Storable g) => (a -> b -> c -> d -> e -> f -> g) -> Vector a -> Vector b -> Vector c -> Vector d -> Vector e -> Vector f -> Vector g {-# INLINE zipWith6 #-} zipWith6 = G.zipWith6 -- | Zip two vectors and their indices with the given function. izipWith :: (Storable a, Storable b, Storable c) => (Int -> a -> b -> c) -> Vector a -> Vector b -> Vector c {-# INLINE izipWith #-} izipWith = G.izipWith -- | Zip three vectors and their indices with the given function. izipWith3 :: (Storable a, Storable b, Storable c, Storable d) => (Int -> a -> b -> c -> d) -> Vector a -> Vector b -> Vector c -> Vector d {-# INLINE izipWith3 #-} izipWith3 = G.izipWith3 izipWith4 :: (Storable a, Storable b, Storable c, Storable d, Storable e) => (Int -> a -> b -> c -> d -> e) -> Vector a -> Vector b -> Vector c -> Vector d -> Vector e {-# INLINE izipWith4 #-} izipWith4 = G.izipWith4 izipWith5 :: (Storable a, Storable b, Storable c, Storable d, Storable e, Storable f) => (Int -> a -> b -> c -> d -> e -> f) -> Vector a -> Vector b -> Vector c -> Vector d -> Vector e -> Vector f {-# INLINE izipWith5 #-} izipWith5 = G.izipWith5 izipWith6 :: (Storable a, Storable b, Storable c, Storable d, Storable e, Storable f, Storable g) => (Int -> a -> b -> c -> d -> e -> f -> g) -> Vector a -> Vector b -> Vector c -> Vector d -> Vector e -> Vector f -> Vector g {-# INLINE izipWith6 #-} izipWith6 = G.izipWith6 -- Filtering -- --------- -- | Drop elements which do not satisfy the predicate filter :: Storable a => (a -> Bool) -> Vector a -> Vector a {-# INLINE filter #-} filter = G.filter -- | Drop elements that do not satisfy the predicate (applied to values and -- their indices) ifilter :: Storable a => (Int -> a -> Bool) -> Vector a -> Vector a {-# INLINE ifilter #-} ifilter = G.ifilter -- | Yield the longest prefix of elements satisfying the predicate. takeWhile :: Storable a => (a -> Bool) -> Vector a -> Vector a {-# INLINE takeWhile #-} takeWhile = G.takeWhile -- | Drop the longest prefix of elements that satisfy the predicate. dropWhile :: Storable a => (a -> Bool) -> Vector a -> Vector a {-# INLINE dropWhile #-} dropWhile = G.dropWhile -- | Split the vector in two parts, the first one containing those elements -- that satisfy the predicate and the second one those that don't. The -- relative order of the elements is preserved at the cost of a (sometimes) -- reduced performance compared to 'unstablePartition'. partition :: Storable a => (a -> Bool) -> Vector a -> (Vector a, Vector a) {-# INLINE partition #-} partition = G.partition -- | Split the vector in two parts, the first one containing those elements -- that satisfy the predicate and the second one those that don't. The order -- of the elements is not preserved. unstablePartition :: Storable a => (a -> Bool) -> Vector a -> (Vector a, Vector a) {-# INLINE unstablePartition #-} unstablePartition = G.unstablePartition -- | Split the vector into the longest prefix of elements that satisfy the -- predicate and the rest. span :: Storable a => (a -> Bool) -> Vector a -> (Vector a, Vector a) {-# INLINE span #-} span = G.span -- | Split the vector into the longest prefix of elements that do not satisfy -- the predicate and the rest. break :: Storable a => (a -> Bool) -> Vector a -> (Vector a, Vector a) {-# INLINE break #-} break = G.break -- Searching -- --------- infix 4 `elem` -- | Check whether the vector contains an element elem :: (Storable a, Eq a) => a -> Vector a -> Bool {-# INLINE elem #-} elem = G.elem infix 4 `notElem` -- | Inverse of `elem` notElem :: (Storable a, Eq a) => a -> Vector a -> Bool {-# INLINE notElem #-} notElem = G.notElem -- | Yield 'Just' the first element matching the predicate or 'Nothing' if no -- such element exists. find :: Storable a => (a -> Bool) -> Vector a -> Maybe a {-# INLINE find #-} find = G.find -- | Yield 'Just' the index of the first element matching the predicate or -- 'Nothing' if no such element exists. findIndex :: Storable a => (a -> Bool) -> Vector a -> Maybe Int {-# INLINE findIndex #-} findIndex = G.findIndex -- | Yield the indices of elements satisfying the predicate findIndices :: Storable a => (a -> Bool) -> Vector a -> Vector Int {-# INLINE findIndices #-} findIndices = G.findIndices -- | Yield 'Just' the index of the first occurence of the given element or -- 'Nothing' if the vector does not contain the element elemIndex :: (Storable a, Eq a) => a -> Vector a -> Maybe Int {-# INLINE elemIndex #-} elemIndex = G.elemIndex -- | Yield the indices of all occurences of the given element elemIndices :: (Storable a, Eq a) => a -> Vector a -> Vector Int {-# INLINE elemIndices #-} elemIndices = G.elemIndices -- Folding -- ------- -- | Left fold foldl :: Storable b => (a -> b -> a) -> a -> Vector b -> a {-# INLINE foldl #-} foldl = G.foldl -- | Lefgt fold on non-empty vectors foldl1 :: Storable a => (a -> a -> a) -> Vector a -> a {-# INLINE foldl1 #-} foldl1 = G.foldl1 -- | Left fold with strict accumulator foldl' :: Storable b => (a -> b -> a) -> a -> Vector b -> a {-# INLINE foldl' #-} foldl' = G.foldl' -- | Left fold on non-empty vectors with strict accumulator foldl1' :: Storable a => (a -> a -> a) -> Vector a -> a {-# INLINE foldl1' #-} foldl1' = G.foldl1' -- | Right fold foldr :: Storable a => (a -> b -> b) -> b -> Vector a -> b {-# INLINE foldr #-} foldr = G.foldr -- | Right fold on non-empty vectors foldr1 :: Storable a => (a -> a -> a) -> Vector a -> a {-# INLINE foldr1 #-} foldr1 = G.foldr1 -- | Right fold with a strict accumulator foldr' :: Storable a => (a -> b -> b) -> b -> Vector a -> b {-# INLINE foldr' #-} foldr' = G.foldr' -- | Right fold on non-empty vectors with strict accumulator foldr1' :: Storable a => (a -> a -> a) -> Vector a -> a {-# INLINE foldr1' #-} foldr1' = G.foldr1' -- | Left fold (function applied to each element and its index) ifoldl :: Storable b => (a -> Int -> b -> a) -> a -> Vector b -> a {-# INLINE ifoldl #-} ifoldl = G.ifoldl -- | Left fold with strict accumulator (function applied to each element and -- its index) ifoldl' :: Storable b => (a -> Int -> b -> a) -> a -> Vector b -> a {-# INLINE ifoldl' #-} ifoldl' = G.ifoldl' -- | Right fold (function applied to each element and its index) ifoldr :: Storable a => (Int -> a -> b -> b) -> b -> Vector a -> b {-# INLINE ifoldr #-} ifoldr = G.ifoldr -- | Right fold with strict accumulator (function applied to each element and -- its index) ifoldr' :: Storable a => (Int -> a -> b -> b) -> b -> Vector a -> b {-# INLINE ifoldr' #-} ifoldr' = G.ifoldr' -- Specialised folds -- ----------------- all :: Storable a => (a -> Bool) -> Vector a -> Bool {-# INLINE all #-} all = G.all any :: Storable a => (a -> Bool) -> Vector a -> Bool {-# INLINE any #-} any = G.any and :: Vector Bool -> Bool {-# INLINE and #-} and = G.and or :: Vector Bool -> Bool {-# INLINE or #-} or = G.or sum :: (Storable a, Num a) => Vector a -> a {-# INLINE sum #-} sum = G.sum product :: (Storable a, Num a) => Vector a -> a {-# INLINE product #-} product = G.product maximum :: (Storable a, Ord a) => Vector a -> a {-# INLINE maximum #-} maximum = G.maximum maximumBy :: Storable a => (a -> a -> Ordering) -> Vector a -> a {-# INLINE maximumBy #-} maximumBy = G.maximumBy minimum :: (Storable a, Ord a) => Vector a -> a {-# INLINE minimum #-} minimum = G.minimum minimumBy :: Storable a => (a -> a -> Ordering) -> Vector a -> a {-# INLINE minimumBy #-} minimumBy = G.minimumBy maxIndex :: (Storable a, Ord a) => Vector a -> Int {-# INLINE maxIndex #-} maxIndex = G.maxIndex maxIndexBy :: Storable a => (a -> a -> Ordering) -> Vector a -> Int {-# INLINE maxIndexBy #-} maxIndexBy = G.maxIndexBy minIndex :: (Storable a, Ord a) => Vector a -> Int {-# INLINE minIndex #-} minIndex = G.minIndex minIndexBy :: Storable a => (a -> a -> Ordering) -> Vector a -> Int {-# INLINE minIndexBy #-} minIndexBy = G.minIndexBy -- Unfolding -- --------- -- | The 'unfoldr' function is a \`dual\' to 'foldr': while 'foldr' -- reduces a vector to a summary value, 'unfoldr' builds a list from -- a seed value. The function takes the element and returns 'Nothing' -- if it is done generating the vector or returns 'Just' @(a,b)@, in which -- case, @a@ is a prepended to the vector and @b@ is used as the next -- element in a recursive call. -- -- A simple use of unfoldr: -- -- > unfoldr (\b -> if b == 0 then Nothing else Just (b, b-1)) 10 -- > [10,9,8,7,6,5,4,3,2,1] -- unfoldr :: Storable a => (b -> Maybe (a, b)) -> b -> Vector a {-# INLINE unfoldr #-} unfoldr = G.unfoldr -- | Unfold at most @n@ elements unfoldrN :: Storable a => Int -> (b -> Maybe (a, b)) -> b -> Vector a {-# INLINE unfoldrN #-} unfoldrN = G.unfoldrN -- Scans -- ----- -- | Prefix scan prescanl :: (Storable a, Storable b) => (a -> b -> a) -> a -> Vector b -> Vector a {-# INLINE prescanl #-} prescanl = G.prescanl -- | Prefix scan with strict accumulator prescanl' :: (Storable a, Storable b) => (a -> b -> a) -> a -> Vector b -> Vector a {-# INLINE prescanl' #-} prescanl' = G.prescanl' -- | Suffix scan postscanl :: (Storable a, Storable b) => (a -> b -> a) -> a -> Vector b -> Vector a {-# INLINE postscanl #-} postscanl = G.postscanl -- | Suffix scan with strict accumulator postscanl' :: (Storable a, Storable b) => (a -> b -> a) -> a -> Vector b -> Vector a {-# INLINE postscanl' #-} postscanl' = G.postscanl' -- | Haskell-style scan scanl :: (Storable a, Storable b) => (a -> b -> a) -> a -> Vector b -> Vector a {-# INLINE scanl #-} scanl = G.scanl -- | Haskell-style scan with strict accumulator scanl' :: (Storable a, Storable b) => (a -> b -> a) -> a -> Vector b -> Vector a {-# INLINE scanl' #-} scanl' = G.scanl' -- | Scan over a non-empty 'Vector' scanl1 :: Storable a => (a -> a -> a) -> Vector a -> Vector a {-# INLINE scanl1 #-} scanl1 = G.scanl1 -- | Scan over a non-empty 'Vector' with a strict accumulator scanl1' :: Storable a => (a -> a -> a) -> Vector a -> Vector a {-# INLINE scanl1' #-} scanl1' = G.scanl1' -- | Prefix right-to-left scan prescanr :: (Storable a, Storable b) => (a -> b -> b) -> b -> Vector a -> Vector b {-# INLINE prescanr #-} prescanr = G.prescanr -- | Prefix right-to-left scan with strict accumulator prescanr' :: (Storable a, Storable b) => (a -> b -> b) -> b -> Vector a -> Vector b {-# INLINE prescanr' #-} prescanr' = G.prescanr' -- | Suffix right-to-left scan postscanr :: (Storable a, Storable b) => (a -> b -> b) -> b -> Vector a -> Vector b {-# INLINE postscanr #-} postscanr = G.postscanr -- | Suffix right-to-left scan with strict accumulator postscanr' :: (Storable a, Storable b) => (a -> b -> b) -> b -> Vector a -> Vector b {-# INLINE postscanr' #-} postscanr' = G.postscanr' -- | Haskell-style right-to-left scan scanr :: (Storable a, Storable b) => (a -> b -> b) -> b -> Vector a -> Vector b {-# INLINE scanr #-} scanr = G.scanr -- | Haskell-style right-to-left scan with strict accumulator scanr' :: (Storable a, Storable b) => (a -> b -> b) -> b -> Vector a -> Vector b {-# INLINE scanr' #-} scanr' = G.scanr' -- | Right-to-left scan over a non-empty vector scanr1 :: Storable a => (a -> a -> a) -> Vector a -> Vector a {-# INLINE scanr1 #-} scanr1 = G.scanr1 -- | Right-to-left scan over a non-empty vector with a strict accumulator scanr1' :: Storable a => (a -> a -> a) -> Vector a -> Vector a {-# INLINE scanr1' #-} scanr1' = G.scanr1' -- Enumeration -- ----------- -- | Yield a vector of the given length containing the values @x@, @x+1@ etc. -- This operation is usually more efficient than 'enumFromTo'. enumFromN :: (Storable a, Num a) => a -> Int -> Vector a {-# INLINE enumFromN #-} enumFromN = G.enumFromN -- | Yield a vector of the given length containing the values @x@, @x+y@, -- @x+y+y@ etc. This operations is usually more efficient than -- 'enumFromThenTo'. enumFromStepN :: (Storable a, Num a) => a -> a -> Int -> Vector a {-# INLINE enumFromStepN #-} enumFromStepN = G.enumFromStepN -- | Enumerate values from @x@ to @y@. -- -- /WARNING:/ This operation can be very inefficient. If at all possible, use -- 'enumFromN' instead. enumFromTo :: (Storable a, Enum a) => a -> a -> Vector a {-# INLINE enumFromTo #-} enumFromTo = G.enumFromTo -- | Enumerate values from @x@ to @y@ with a specific step @z@. -- -- /WARNING:/ This operation can be very inefficient. If at all possible, use -- 'enumFromStepN' instead. enumFromThenTo :: (Storable a, Enum a) => a -> a -> a -> Vector a {-# INLINE enumFromThenTo #-} enumFromThenTo = G.enumFromThenTo -- Conversion to/from lists -- ------------------------ -- | Convert a vector to a list toList :: Storable a => Vector a -> [a] {-# INLINE toList #-} toList = G.toList -- | Convert a list to a vector fromList :: Storable a => [a] -> Vector a {-# INLINE fromList #-} fromList = G.fromList -- | Convert the first @n@ elements of a list to a vector -- -- > fromListN n xs = fromList (take n xs) fromListN :: Storable a => Int -> [a] -> Vector a {-# INLINE fromListN #-} fromListN = G.fromListN -- Monadic operations -- ------------------ -- | Perform the monadic action the given number of times and store the -- results in a vector. replicateM :: (Monad m, Storable a) => Int -> m a -> m (Vector a) {-# INLINE replicateM #-} replicateM = G.replicateM -- | Apply the monadic action to all elements of the vector, yielding a vector -- of results mapM :: (Monad m, Storable a, Storable b) => (a -> m b) -> Vector a -> m (Vector b) {-# INLINE mapM #-} mapM = G.mapM -- | Apply the monadic action to all elements of a vector and ignore the -- results mapM_ :: (Monad m, Storable a) => (a -> m b) -> Vector a -> m () {-# INLINE mapM_ #-} mapM_ = G.mapM_ -- | Apply the monadic action to all elements of the vector, yielding a vector -- of results forM :: (Monad m, Storable a, Storable b) => Vector a -> (a -> m b) -> m (Vector b) {-# INLINE forM #-} forM = G.forM -- | Apply the monadic action to all elements of a vector and ignore the -- results forM_ :: (Monad m, Storable a) => Vector a -> (a -> m b) -> m () {-# INLINE forM_ #-} forM_ = G.forM_ -- | Zip the two vectors with the monadic action and yield a vector of results zipWithM :: (Monad m, Storable a, Storable b, Storable c) => (a -> b -> m c) -> Vector a -> Vector b -> m (Vector c) {-# INLINE zipWithM #-} zipWithM = G.zipWithM -- | Zip the two vectors with the monadic action and ignore the results zipWithM_ :: (Monad m, Storable a, Storable b) => (a -> b -> m c) -> Vector a -> Vector b -> m () {-# INLINE zipWithM_ #-} zipWithM_ = G.zipWithM_ -- | Drop elements that do not satisfy the monadic predicate filterM :: (Monad m, Storable a) => (a -> m Bool) -> Vector a -> m (Vector a) {-# INLINE filterM #-} filterM = G.filterM -- | Monadic fold foldM :: (Monad m, Storable b) => (a -> b -> m a) -> a -> Vector b -> m a {-# INLINE foldM #-} foldM = G.foldM -- | Monadic fold over non-empty vectors fold1M :: (Monad m, Storable a) => (a -> a -> m a) -> Vector a -> m a {-# INLINE fold1M #-} fold1M = G.fold1M -- | Monadic fold with strict accumulator foldM' :: (Monad m, Storable b) => (a -> b -> m a) -> a -> Vector b -> m a {-# INLINE foldM' #-} foldM' = G.foldM' -- | Monad fold over non-empty vectors with strict accumulator fold1M' :: (Monad m, Storable a) => (a -> a -> m a) -> Vector a -> m a {-# INLINE fold1M' #-} fold1M' = G.fold1M' -- Destructive operations -- ---------------------- -- | Destructively initialise a vector. create :: Storable a => (forall s. ST s (MVector s a)) -> Vector a {-# INLINE create #-} create = G.create -- | Apply a destructive operation to a vector. The operation is applied to a -- copy of the vector unless it can be safely performed in place. modify :: Storable a => (forall s. MVector s a -> ST s ()) -> Vector a -> Vector a {-# INLINE modify #-} modify = G.modify -- | Copy an immutable vector into a mutable one. The two vectors must have -- the same length. This is not checked. unsafeCopy :: (Storable a, PrimMonad m) => MVector (PrimState m) a -> Vector a -> m () {-# INLINE unsafeCopy #-} unsafeCopy = G.unsafeCopy -- | Copy an immutable vector into a mutable one. The two vectors must have the -- same length. copy :: (Storable a, PrimMonad m) => MVector (PrimState m) a -> Vector a -> m () {-# INLINE copy #-} copy = G.copy -- Accessing the underlying memory -- ------------------------------- -- | Create a vector from a 'ForeignPtr' with an offset and a length. The data -- may not be modified through the 'ForeignPtr' afterwards. unsafeFromForeignPtr :: Storable a => ForeignPtr a -- ^ pointer -> Int -- ^ offset -> Int -- ^ length -> Vector a {-# INLINE unsafeFromForeignPtr #-} unsafeFromForeignPtr fp i n = Vector (offsetToPtr fp i) n fp -- | Yield the underlying 'ForeignPtr' together with the offset to the data -- and its length. The data may not be modified through the 'ForeignPtr'. unsafeToForeignPtr :: Storable a => Vector a -> (ForeignPtr a, Int, Int) {-# INLINE unsafeToForeignPtr #-} unsafeToForeignPtr (Vector p n fp) = (fp, ptrToOffset fp p, n) -- | Pass a pointer to the vector's data to the IO action. The data may not be -- modified through the 'Ptr. unsafeWith :: Storable a => Vector a -> (Ptr a -> IO b) -> IO b {-# INLINE unsafeWith #-} unsafeWith (Vector p n fp) m = withForeignPtr fp $ \_ -> m p