/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "webrtc/common_audio/vad/vad_filterbank.h" #include #include "webrtc/common_audio/signal_processing/include/signal_processing_library.h" #include "webrtc/typedefs.h" // Constants used in LogOfEnergy(). static const int16_t kLogConst = 24660; // 160*log10(2) in Q9. static const int16_t kLogEnergyIntPart = 14336; // 14 in Q10 // Coefficients used by HighPassFilter, Q14. static const int16_t kHpZeroCoefs[3] = { 6631, -13262, 6631 }; static const int16_t kHpPoleCoefs[3] = { 16384, -7756, 5620 }; // Allpass filter coefficients, upper and lower, in Q15. // Upper: 0.64, Lower: 0.17 static const int16_t kAllPassCoefsQ15[2] = { 20972, 5571 }; // Adjustment for division with two in SplitFilter. static const int16_t kOffsetVector[6] = { 368, 368, 272, 176, 176, 176 }; // High pass filtering, with a cut-off frequency at 80 Hz, if the |data_in| is // sampled at 500 Hz. // // - data_in [i] : Input audio data sampled at 500 Hz. // - data_length [i] : Length of input and output data. // - filter_state [i/o] : State of the filter. // - data_out [o] : Output audio data in the frequency interval // 80 - 250 Hz. static void HighPassFilter(const int16_t* data_in, int data_length, int16_t* filter_state, int16_t* data_out) { int i; const int16_t* in_ptr = data_in; int16_t* out_ptr = data_out; int32_t tmp32 = 0; // The sum of the absolute values of the impulse response: // The zero/pole-filter has a max amplification of a single sample of: 1.4546 // Impulse response: 0.4047 -0.6179 -0.0266 0.1993 0.1035 -0.0194 // The all-zero section has a max amplification of a single sample of: 1.6189 // Impulse response: 0.4047 -0.8094 0.4047 0 0 0 // The all-pole section has a max amplification of a single sample of: 1.9931 // Impulse response: 1.0000 0.4734 -0.1189 -0.2187 -0.0627 0.04532 for (i = 0; i < data_length; i++) { // All-zero section (filter coefficients in Q14). tmp32 = kHpZeroCoefs[0] * *in_ptr; tmp32 += kHpZeroCoefs[1] * filter_state[0]; tmp32 += kHpZeroCoefs[2] * filter_state[1]; filter_state[1] = filter_state[0]; filter_state[0] = *in_ptr++; // All-pole section (filter coefficients in Q14). tmp32 -= kHpPoleCoefs[1] * filter_state[2]; tmp32 -= kHpPoleCoefs[2] * filter_state[3]; filter_state[3] = filter_state[2]; filter_state[2] = (int16_t) (tmp32 >> 14); *out_ptr++ = filter_state[2]; } } // All pass filtering of |data_in|, used before splitting the signal into two // frequency bands (low pass vs high pass). // Note that |data_in| and |data_out| can NOT correspond to the same address. // // - data_in [i] : Input audio signal given in Q0. // - data_length [i] : Length of input and output data. // - filter_coefficient [i] : Given in Q15. // - filter_state [i/o] : State of the filter given in Q(-1). // - data_out [o] : Output audio signal given in Q(-1). static void AllPassFilter(const int16_t* data_in, int data_length, int16_t filter_coefficient, int16_t* filter_state, int16_t* data_out) { // The filter can only cause overflow (in the w16 output variable) // if more than 4 consecutive input numbers are of maximum value and // has the the same sign as the impulse responses first taps. // First 6 taps of the impulse response: // 0.6399 0.5905 -0.3779 0.2418 -0.1547 0.0990 int i; int16_t tmp16 = 0; int32_t tmp32 = 0; int32_t state32 = ((int32_t) (*filter_state) << 16); // Q15 for (i = 0; i < data_length; i++) { tmp32 = state32 + WEBRTC_SPL_MUL_16_16(filter_coefficient, *data_in); tmp16 = (int16_t) (tmp32 >> 16); // Q(-1) *data_out++ = tmp16; state32 = (((int32_t) (*data_in)) << 14); // Q14 state32 -= WEBRTC_SPL_MUL_16_16(filter_coefficient, tmp16); // Q14 state32 <<= 1; // Q15. data_in += 2; } *filter_state = (int16_t) (state32 >> 16); // Q(-1) } // Splits |data_in| into |hp_data_out| and |lp_data_out| corresponding to // an upper (high pass) part and a lower (low pass) part respectively. // // - data_in [i] : Input audio data to be split into two frequency bands. // - data_length [i] : Length of |data_in|. // - upper_state [i/o] : State of the upper filter, given in Q(-1). // - lower_state [i/o] : State of the lower filter, given in Q(-1). // - hp_data_out [o] : Output audio data of the upper half of the spectrum. // The length is |data_length| / 2. // - lp_data_out [o] : Output audio data of the lower half of the spectrum. // The length is |data_length| / 2. static void SplitFilter(const int16_t* data_in, int data_length, int16_t* upper_state, int16_t* lower_state, int16_t* hp_data_out, int16_t* lp_data_out) { int i; int half_length = data_length >> 1; // Downsampling by 2. int16_t tmp_out; // All-pass filtering upper branch. AllPassFilter(&data_in[0], half_length, kAllPassCoefsQ15[0], upper_state, hp_data_out); // All-pass filtering lower branch. AllPassFilter(&data_in[1], half_length, kAllPassCoefsQ15[1], lower_state, lp_data_out); // Make LP and HP signals. for (i = 0; i < half_length; i++) { tmp_out = *hp_data_out; *hp_data_out++ -= *lp_data_out; *lp_data_out++ += tmp_out; } } // Calculates the energy of |data_in| in dB, and also updates an overall // |total_energy| if necessary. // // - data_in [i] : Input audio data for energy calculation. // - data_length [i] : Length of input data. // - offset [i] : Offset value added to |log_energy|. // - total_energy [i/o] : An external energy updated with the energy of // |data_in|. // NOTE: |total_energy| is only updated if // |total_energy| <= |kMinEnergy|. // - log_energy [o] : 10 * log10("energy of |data_in|") given in Q4. static void LogOfEnergy(const int16_t* data_in, int data_length, int16_t offset, int16_t* total_energy, int16_t* log_energy) { // |tot_rshifts| accumulates the number of right shifts performed on |energy|. int tot_rshifts = 0; // The |energy| will be normalized to 15 bits. We use unsigned integer because // we eventually will mask out the fractional part. uint32_t energy = 0; assert(data_in != NULL); assert(data_length > 0); energy = (uint32_t) WebRtcSpl_Energy((int16_t*) data_in, data_length, &tot_rshifts); if (energy != 0) { // By construction, normalizing to 15 bits is equivalent with 17 leading // zeros of an unsigned 32 bit value. int normalizing_rshifts = 17 - WebRtcSpl_NormU32(energy); // In a 15 bit representation the leading bit is 2^14. log2(2^14) in Q10 is // (14 << 10), which is what we initialize |log2_energy| with. For a more // detailed derivations, see below. int16_t log2_energy = kLogEnergyIntPart; tot_rshifts += normalizing_rshifts; // Normalize |energy| to 15 bits. // |tot_rshifts| is now the total number of right shifts performed on // |energy| after normalization. This means that |energy| is in // Q(-tot_rshifts). if (normalizing_rshifts < 0) { energy <<= -normalizing_rshifts; } else { energy >>= normalizing_rshifts; } // Calculate the energy of |data_in| in dB, in Q4. // // 10 * log10("true energy") in Q4 = 2^4 * 10 * log10("true energy") = // 160 * log10(|energy| * 2^|tot_rshifts|) = // 160 * log10(2) * log2(|energy| * 2^|tot_rshifts|) = // 160 * log10(2) * (log2(|energy|) + log2(2^|tot_rshifts|)) = // (160 * log10(2)) * (log2(|energy|) + |tot_rshifts|) = // |kLogConst| * (|log2_energy| + |tot_rshifts|) // // We know by construction that |energy| is normalized to 15 bits. Hence, // |energy| = 2^14 + frac_Q15, where frac_Q15 is a fractional part in Q15. // Further, we'd like |log2_energy| in Q10 // log2(|energy|) in Q10 = 2^10 * log2(2^14 + frac_Q15) = // 2^10 * log2(2^14 * (1 + frac_Q15 * 2^-14)) = // 2^10 * (14 + log2(1 + frac_Q15 * 2^-14)) ~= // (14 << 10) + 2^10 * (frac_Q15 * 2^-14) = // (14 << 10) + (frac_Q15 * 2^-4) = (14 << 10) + (frac_Q15 >> 4) // // Note that frac_Q15 = (|energy| & 0x00003FFF) // Calculate and add the fractional part to |log2_energy|. log2_energy += (int16_t) ((energy & 0x00003FFF) >> 4); // |kLogConst| is in Q9, |log2_energy| in Q10 and |tot_rshifts| in Q0. // Note that we in our derivation above have accounted for an output in Q4. *log_energy = (int16_t) (WEBRTC_SPL_MUL_16_16_RSFT( kLogConst, log2_energy, 19) + WEBRTC_SPL_MUL_16_16_RSFT(tot_rshifts, kLogConst, 9)); if (*log_energy < 0) { *log_energy = 0; } } else { *log_energy = offset; return; } *log_energy += offset; // Update the approximate |total_energy| with the energy of |data_in|, if // |total_energy| has not exceeded |kMinEnergy|. |total_energy| is used as an // energy indicator in WebRtcVad_GmmProbability() in vad_core.c. if (*total_energy <= kMinEnergy) { if (tot_rshifts >= 0) { // We know by construction that the |energy| > |kMinEnergy| in Q0, so add // an arbitrary value such that |total_energy| exceeds |kMinEnergy|. *total_energy += kMinEnergy + 1; } else { // By construction |energy| is represented by 15 bits, hence any number of // right shifted |energy| will fit in an int16_t. In addition, adding the // value to |total_energy| is wrap around safe as long as // |kMinEnergy| < 8192. *total_energy += (int16_t) (energy >> -tot_rshifts); // Q0. } } } int16_t WebRtcVad_CalculateFeatures(VadInstT* self, const int16_t* data_in, int data_length, int16_t* features) { int16_t total_energy = 0; // We expect |data_length| to be 80, 160 or 240 samples, which corresponds to // 10, 20 or 30 ms in 8 kHz. Therefore, the intermediate downsampled data will // have at most 120 samples after the first split and at most 60 samples after // the second split. int16_t hp_120[120], lp_120[120]; int16_t hp_60[60], lp_60[60]; const int half_data_length = data_length >> 1; int length = half_data_length; // |data_length| / 2, corresponds to // bandwidth = 2000 Hz after downsampling. // Initialize variables for the first SplitFilter(). int frequency_band = 0; const int16_t* in_ptr = data_in; // [0 - 4000] Hz. int16_t* hp_out_ptr = hp_120; // [2000 - 4000] Hz. int16_t* lp_out_ptr = lp_120; // [0 - 2000] Hz. assert(data_length >= 0); assert(data_length <= 240); assert(4 < kNumChannels - 1); // Checking maximum |frequency_band|. // Split at 2000 Hz and downsample. SplitFilter(in_ptr, data_length, &self->upper_state[frequency_band], &self->lower_state[frequency_band], hp_out_ptr, lp_out_ptr); // For the upper band (2000 Hz - 4000 Hz) split at 3000 Hz and downsample. frequency_band = 1; in_ptr = hp_120; // [2000 - 4000] Hz. hp_out_ptr = hp_60; // [3000 - 4000] Hz. lp_out_ptr = lp_60; // [2000 - 3000] Hz. SplitFilter(in_ptr, length, &self->upper_state[frequency_band], &self->lower_state[frequency_band], hp_out_ptr, lp_out_ptr); // Energy in 3000 Hz - 4000 Hz. length >>= 1; // |data_length| / 4 <=> bandwidth = 1000 Hz. LogOfEnergy(hp_60, length, kOffsetVector[5], &total_energy, &features[5]); // Energy in 2000 Hz - 3000 Hz. LogOfEnergy(lp_60, length, kOffsetVector[4], &total_energy, &features[4]); // For the lower band (0 Hz - 2000 Hz) split at 1000 Hz and downsample. frequency_band = 2; in_ptr = lp_120; // [0 - 2000] Hz. hp_out_ptr = hp_60; // [1000 - 2000] Hz. lp_out_ptr = lp_60; // [0 - 1000] Hz. length = half_data_length; // |data_length| / 2 <=> bandwidth = 2000 Hz. SplitFilter(in_ptr, length, &self->upper_state[frequency_band], &self->lower_state[frequency_band], hp_out_ptr, lp_out_ptr); // Energy in 1000 Hz - 2000 Hz. length >>= 1; // |data_length| / 4 <=> bandwidth = 1000 Hz. LogOfEnergy(hp_60, length, kOffsetVector[3], &total_energy, &features[3]); // For the lower band (0 Hz - 1000 Hz) split at 500 Hz and downsample. frequency_band = 3; in_ptr = lp_60; // [0 - 1000] Hz. hp_out_ptr = hp_120; // [500 - 1000] Hz. lp_out_ptr = lp_120; // [0 - 500] Hz. SplitFilter(in_ptr, length, &self->upper_state[frequency_band], &self->lower_state[frequency_band], hp_out_ptr, lp_out_ptr); // Energy in 500 Hz - 1000 Hz. length >>= 1; // |data_length| / 8 <=> bandwidth = 500 Hz. LogOfEnergy(hp_120, length, kOffsetVector[2], &total_energy, &features[2]); // For the lower band (0 Hz - 500 Hz) split at 250 Hz and downsample. frequency_band = 4; in_ptr = lp_120; // [0 - 500] Hz. hp_out_ptr = hp_60; // [250 - 500] Hz. lp_out_ptr = lp_60; // [0 - 250] Hz. SplitFilter(in_ptr, length, &self->upper_state[frequency_band], &self->lower_state[frequency_band], hp_out_ptr, lp_out_ptr); // Energy in 250 Hz - 500 Hz. length >>= 1; // |data_length| / 16 <=> bandwidth = 250 Hz. LogOfEnergy(hp_60, length, kOffsetVector[1], &total_energy, &features[1]); // Remove 0 Hz - 80 Hz, by high pass filtering the lower band. HighPassFilter(lp_60, length, self->hp_filter_state, hp_120); // Energy in 80 Hz - 250 Hz. LogOfEnergy(hp_120, length, kOffsetVector[0], &total_energy, &features[0]); return total_energy; }