
wumpus-core Guide

Stephen Tetley

October 6, 2010

1 About wumpus-core

This guide was last updated for wumpus-core version 0.35.0.
wumpus-core is a Haskell library for generating 2D vector pictures. It was

written with portability as a priority, so it has no dependencies on foreign C
libraries. Output to PostScript and SVG (Scalable Vector Graphics) is sup-
ported.

wumpus-core is rather primitive, the basic drawing objects are paths and
text labels. A second library wumpus-basic contains code for higher level draw-
ing but it experimental and the APIs are a long way from stable (it should
probably be considered a technology preview).

Although wumpus-core is heavily inspired by PostScript it avoids PostScript’s
notion of an (implicit) current point and the movements lineto, moveto etc.,
instead wumpus-core aims for a more coordinate free style.

2 Exposed modules

wumpus-core exports the following modules:

Wumpus.Core. Top-level shim module to import all the exposed modules. Some
internal data types are also exported as opaque - the implementation is
hidden, but the type name is exposed so it can be used in the type signa-
tures of userland functions. Typically, where these data types need to be
instantiated, smart constructors are provided.

Wumpus.Core.AffineTrans. The standard affine transformations (scaling, ro-
tation, translation) implemented as type classes, with a of derived op-
erations - reflections about the X or Y axes, rotations through common
angles.

Wumpus.Core.BoundingBox. Data type representing bounding boxes and op-
erations on them. Bounding boxes are important for Pictures and they
support the definition of picture composition operators.

1

Wumpus.Core.Colour. A single colour type RGBi is supported. This type de-
fines colour as a triple of integers (Word8) - black is (0, 0, 0); white is (255,
255, 255). Some named colours are defined, although they are hidden by
the top level shim module to avoid name clashes with libraries providing
more extensive lists of colours. Wumpus.Core.Colour can be imported
directly if the named colours are required.

Wumpus.Core.FontSize. Various calculations for font size metrics. wumpus-core
has limited handling of font / character size as it cannot interpret the met-
rics within font files (doing so would be a huge task). Instead this module
provides some metrics based on the Courier mono-spaced font that can be
used for rudimentary size calculations on text labels.

Wumpus.Core.Geometry. The usual types an operations from affine geometry -
points, vectors and 3x3 matrices. Also the DUnit type family - essentially
this type family is a trick used heavily within wumpus-core to avoid an-
notating class declarations with constraints on the unit, class constraints
like Fractional u can then be shifted to the instance declaration rather
than the class declaration.

Wumpus.Core.GraphicsState. Data types modelling the attributes of PostScript’s
graphics state (stroke style, dash pattern, etc.). Note that wumpus-core
annotates all primitives - paths, text labels - with their rendering style,
the GraphicsState here is an internal detail used to generate more ef-
ficient PostScript and SVG. The smaller types in this module such as
StrokeAttr are the only ones relevant for the public API.

Wumpus.Core.OutputPostScript. Functions to write PostScript or encapsu-
lated PostScript files.

Wumpus.Core.OutputSVG. Functions to write SVG files.

Wumpus.Core.Picture. Operations to build pictures - paths and labels within
an affine frame. Generally the functions here are convenience construc-
tors for types from the hidden module Wumpus.Core.PictureInternal.
The types from PictureInternal are exported as opaque signatures by
Wumpus.Core.WumpusTypes.

Wumpus.Core.PtSize. Text size calculations in Core.FontSize use points (i.e.
1/72 of an inch). The PtSize module is a numeric type to represent them.

Wumpus.Core.TextEncoder. Types for handling extended character codes e.g.
for accented characters or the Symbol font. Special characters generally
have to be escaped in the PostScript and SVG output, this module pro-
vides data types for lookup tables between the escaped character code and
its PostScript or SVG representation. Text encoders are associated with
fonts - glyphs within a font are located by their character name / code.
Currently wumpus-core has encoders for Latin1 and the Symbol font.

2

(0,0) (100,0)

(0,100) (100,100)

Figure 1: The world frame, with origin at the bottom left.

Wumpus.Core.TextLatin1. A instance of the TextEncoder type for mapping
Latin 1 characters to the PostScript and SVG escape characters. Typically
this encoder is associated with the fonts - Helvetica, Courier and Times-
Roman.

Wumpus.Core.TextSymbol. A instance of the TextEncoder type for the Symbol
font. Note, unfortunately escape codes for the Symbol font seem to cause
problems for some SVG renderers. Chrome appears fine, but Safari and
Firefox currently have problems.

Wumpus.Core.VersionNumber. Current version number of wumpus-core .

Wumpus.Core.WumpusTypes. This module collects internal types for Pictures,
Paths etc. and presents them as opaque types - i.e. their constructors are
hidden.

3 Drawing model

wumpus-core has two main drawable primitives paths and text labels, ellipses
are also a primitive although this is a concession to efficiency when drawing
dots (which would otherwise require 4 to 8 Bezier arcs to describe). Paths are
made from straight sections or Bezier curves, they can be open and stroked to
produce a line; or closed and stroked, filled or clipped. Labels represent a single
horizontal line of text - multiple lines must be composed from multiple labels.

Primitives are attributed with drawing styles - font name and size for labels;
line width, colour, etc. for paths. Drawing primitives is unfortunately compli-
cated due to the need to support hyperlinks in SVG output. Primitives have
to be lifted to a PrimElement before they can be placed within a Picture - in
practive this lifting is done automatically by using the shorthand constructors
in Wumpus.Core.Picture. The function frame assembles a list of primitives
into a Picture with the standard affine frame where the origin is at (0,0) and
the X and Y axes have the unit bases (i.e. they have a scaling value of 1).

wumpus-core uses the same picture frame as PostScript where the origin at
the bottom left, see Figure 1. This contrasts to SVG where the origin at the top-
left. When wumpus-core generates SVG, the whole picture is generated within

3

a matrix transformation [1.0, 0.0, 0.0, -1.0, 0.0, 0.0] that changes the picture
to use PostScript coordinates. This has the side-effect that text is otherwise
drawn upside down, so wumpus-core adds a rectifying transform to each text
element.

Once labels and paths are assembled as a Picture they are transformable
with the usual affine transformations (scaling, rotation, translation).

Graphics properties (e.g colour) are opaque once primitives are assembled
into pictures - it is not possible to write a transformation function that turns
elements in a picture blue. In some ways this is a limitation - for instance,
the Diagrams library appears to support some notion of attribute overriding;
however avoiding mutable attributes does keep this part of wumpus-core con-
ceptually simple. If one wanted to draw blue or red arrows with wumpus-core ,
one would make the drawing colour a parameter of the arrow creation function.

4 Affine transformations

For affine transformations Wumpus uses the Matrix3’3 data type to represent
3x3 matrices in row-major form. The constructor (M3’3 a b c d e f g h i)

builds this matrix:

a b c
d e f
g h i

Note, in practice the elements g and h are superflous. They are included
in the data type to make it match the typical representation from geometry
texts. Also, typically matrices will implicitly created with functions from the
Core.Geometry and Core.AffineTrans modules.

For example a translation matrix moving 10 units in the X-axis and 20 in the
Y-axis will be encoded as (M3’3 1.0 0.0 10.0 0.0 1.0 20.0 0.0 0.0 1.0)

1.0 0.0 10.0
0.0 1.0 20.0
0.0 0.0 1.0

Affine transformations are communicated to PostScript as concat com-
mands. Effectively wumpus-core performs no transformations itself, delegating
all the work to PostScript or SVG. This means transformations can generally
be located in the output if a picture needs to be debugged, though as this might
not be very helpful in practice. Internally wumpus-core only performs the trans-
formation on the bounding box of a picture - it needs to do this to maintain
the size metrics of a picture allowing transformed pictures to be composed with
picture composition operators like the picBeside combinator.

PostScript uses column-major form and uses a six element matrix rather
than a nine element one. The translation matrix above would produce this
concat command:

4

[1.0 0.0 0.0 1.0 10.0 20.0] concat

Similarly, it would be communicated to SVG via a group element:

<g transform="matrix(1.0, 0.0, 0.0, 1.0, 10.0, 20.0)"> ... </g>

For efficiency reasons wumpus-core supports some transformations on Prim-
itives. These are not affine transformations as Primitives are not in an affine
frame until they are lifted to Pictures (Primitives have no notion of origin).
For Paths, all the transformations are precomputed before the output is gener-
ated. Unfortunately scaling and rotation cannot be precomputed for labels and
ellipses, so matrix operations are generated in the PostScript and SVG output.

5 Font handling

Font handling is quite primitive in wumpus-core . The bounding box of text
label is only estimated - based on the length of the label’s string rather than
the metrics of the individual letters encoded in the font. Accessing the glyph
metrics in a font would require a font loader to read TrueType font files. This
would be a significant development effort, probably larger than the effort put
into wumpus-core itself; for wumpus-core ’s intended use - producing diagrams
and pictures rather than high quality text - the primitive font handling is not
such a draw back.

In both PostScript and SVGmis-named fonts can cause somewhat inscrutable
printing anomalies - usually falling back to a default font but not always.
At worst, PostScript may do no subsequent drawing after a font load error.
wumpus-core uses scalefont in the generated PostScript, this semingly works
for any integer size and not just the regular font sizes (10, 12, 18, 24, 36).

The following table lists PostScript fonts and their SVG equivalents, the
package wumpus-basic includes a module Wumpus.Basic.SafeFonts encoding
the fonts in this list and matching them to their appropriate TextEncoder.

PostScript name SVG name
Times-Roman Times New Roman
Times-Italic Times New Roman - style=”italic”
Times-Bold Times New Roman - font-weight=”bold”
Times-BoldItalic Times New Roman - style=”italic”, font-weight=”bold”
Helvetica Helvetica
Helvetica-Oblique Helvetica - style=”italic”
Helvetica-Bold Helvetica - font-weight=”bold”
Helvetica-Bold-Oblique Helvetica - style=”italic”, font-weight=”bold”
Courier Courier New
Courier-Oblique Courier New - style=”italic”
Courier-Bold Courier New - font-weight=”bold”
Courier-Bold-Oblique Courier New - style=”italic”, font-weight=”bold”
Symbol Symbol

5

6 Acknowledgments

PostScript is a registered trademark of Adobe Systems Inc.

6

