
wumpus-core Guide

Stephen Tetley

November 5, 2010

1 About wumpus-core

This guide was last updated for wumpus-core version 0.37.0.
wumpus-core is a Haskell library for generating 2D vector pictures. It was

written with portability as a priority, so it has no dependencies on foreign C
libraries. Output to PostScript and SVG (Scalable Vector Graphics) is sup-
ported.

wumpus-core is rather primitive, the basic drawing objects are paths and
text labels. A second library wumpus-basic contains code for higher level draw-
ing but it experimental and the APIs are a long way from stable (it should
probably be considered a technology preview).

Although wumpus-core is heavily inspired by PostScript it avoids PostScript’s
notion of an (implicit) current point and the movements lineto, moveto etc.,
instead wumpus-core aims for a more coordinate free style.

2 Exposed modules

wumpus-core exports the following modules:

Wumpus.Core. Top-level shim module to import all the exposed modules. Some
internal data types are also exported as opaque - the implementation is
hidden, but the type name is exposed so it can be used in the type signa-
tures of userland functions. Typically, where these data types need to be
instantiated smart constructors are provided.

Wumpus.Core.AffineTrans. The standard affine transformations (scaling, ro-
tation, translation) implemented as type classes, with a of derived op-
erations - reflections about the X or Y axes, rotations through common
angles.

Wumpus.Core.BoundingBox. Data type representing bounding boxes and op-
erations on them. Bounding boxes are important for Pictures and they
support the definition of picture composition operators.

1



Wumpus.Core.Colour. A single colour type RGBi is supported. This type de-
fines colour as a triple of integers (Word8) - black is (0, 0, 0); white is (255,
255, 255). Some named colours are defined, although they are hidden by
the top level shim module to avoid name clashes with libraries providing
more extensive lists of colours. Wumpus.Core.Colour can be imported
directly if the named colours are required.

Wumpus.Core.FontSize. Various calculations for font size metrics. wumpus-core
has limited handling of font / character size as it cannot interpret the met-
rics within font files (doing so would be a huge task). Instead this module
provides some metrics based on the Courier mono-spaced font that can be
used for rudimentary size calculations on text labels.

Wumpus.Core.Geometry. The usual types an operations from affine geometry -
points, vectors and 3x3 matrices, also the DUnit type family. Essentially
this type family is a trick used heavily within wumpus-core to avoid an-
notating class declarations with constraints on the unit - class constraints
like Fractional u can then be shifted to the instance declaration rather
than the class declaration.

Wumpus.Core.GraphicsState. Data types modelling the attributes of PostScript’s
graphics state (stroke style, dash pattern, etc.). Note that wumpus-core
annotates all primitives - paths, text labels - with their rendering style,
the GraphicsState here is an internal detail used to generate more ef-
ficient PostScript and SVG. The smaller types in this module such as
StrokeAttr are the only ones relevant for the public API.

Wumpus.Core.OutputPostScript. Functions to write PostScript or encapsu-
lated PostScript files.

Wumpus.Core.OutputSVG. Functions to write SVG files.

Wumpus.Core.Picture. Operations to build pictures - paths and labels within
an affine frame. Generally the functions here are convenience construc-
tors for types from the hidden module Wumpus.Core.PictureInternal.
The types from PictureInternal are exported as opaque signatures by
Wumpus.Core.WumpusTypes.

Wumpus.Core.PtSize. Text size calculations in Core.FontSize use points (i.e.
1/72 of an inch). The PtSize module is a numeric type to represent them.

Wumpus.Core.TextEncoder. Types for handling extended character codes within
fonts e.g. for accented characters or the Symbol font. Special characters
generally have to be escaped in the PostScript and SVG output, this mod-
ule provides data types for lookup tables between the escaped character
code and its PostScript or SVG representation. Text encoders are as-
sociated with fonts - glyphs within a font are located by their character
name / code. Currently wumpus-core has encoders for the Standard Latin
Encoding table and the Symbol font character set.

2



(0,0) (100,0)

(0,100) (100,100)

Figure 1: The world frame, with origin at the bottom left.

Wumpus.Core.TextLatin1. A instance of the TextEncoder type for mapping
Latin 1 characters to the PostScript and SVG escape characters. Typically
this encoder is associated with the fonts - Helvetica, Courier and Times-
Roman.

Wumpus.Core.TextSymbol. A instance of the TextEncoder type for the Symbol
font. Note, unfortunately escape codes for the Symbol font seem to cause
problems for some SVG renderers. Chrome appears fine, but Safari and
Firefox currently have problems.

Wumpus.Core.VersionNumber. Current version number of wumpus-core .

Wumpus.Core.WumpusTypes. This module collects internal types for Pictures,
Paths etc. and presents them as opaque types - i.e. their constructors are
hidden.

3 Drawing model

wumpus-core has two main drawable primitives paths and text labels, ellipses
are also a primitive although this is a concession to efficiency when drawing
dots (which would otherwise require 4 to 8 Bezier arcs to describe). Paths are
made from straight sections or Bezier curves, they can be open and stroked to
produce a line; or closed and stroked, filled or clipped. Labels represent a single
horizontal line of text - multiple lines must be composed from multiple labels.

Primitives are attributed with drawing styles - font name and size for labels;
line width, colour, etc. for paths. Primitives can be grouped to support sup-
port hyperlinks in SVG output (so Primitives are not strictly primitive). The
function frame assembles a list of primitives into a Picture with the standard
affine frame where the origin is at (0,0) and the X and Y axes have the unit
bases (i.e. they have a scaling value of 1).

wumpus-core uses the same picture frame as PostScript where the origin at
the bottom left, see Figure 1. This contrasts to SVG where the origin at the top-
left. When wumpus-core generates SVG, the whole picture is generated within
a matrix transformation [ 1.0, 0.0, 0.0, -1.0, 0.0, 0.0 ] that changes the picture
to use PostScript coordinates. This has the side-effect that text is otherwise

3



drawn upside down, so wumpus-core adds a rectifying transform to each text
element.

Once labels and paths are assembled as a Picture they are transformable
with the usual affine transformations (scaling, rotation, translation).

Graphics properties (e.g colour) are opaque once primitives are assembled
into pictures - it is not possible to write a transformation function that turns
elements in a picture blue. In some ways this is a limitation - for instance,
the Diagrams library appears to support some notion of attribute overriding;
however avoiding mutable attributes does keep this part of wumpus-core con-
ceptually simple. To make a blue or red arrow with wumpus-core , one would
make drawing colour a parameter of the arrow constructor function.

4 Affine transformations

For affine transformations Wumpus uses the Matrix3’3 data type to represent
3x3 matrices in row-major form. The constructor (M3’3 a b c d e f g h i)

builds this matrix:

a b c
d e f
g h i

Note, in practice the elements g and h are superflous. They are included
in the data type to make it match the typical representation from geometry
texts. Also, typically matrices will implicitly created with functions from the
Core.Geometry and Core.AffineTrans modules.

For example a translation matrix moving 10 units in the X-axis and 20 in the
Y-axis will be encoded as (M3’3 1.0 0.0 10.0 0.0 1.0 20.0 0.0 0.0 1.0)

1.0 0.0 10.0
0.0 1.0 20.0
0.0 0.0 1.0

Affine transformations on Pictures are communicated to PostScript as concat
commands. For Pictures, wumpus-core performs no transformations itself, del-
egating all the work to PostScript or SVG. Internally wumpus-core transforms
the bounding boxes of Pictures - it needs to do this to maintain their size met-
rics allowing transformed pictures to be composed with picture composition
operators like the picBeside combinator.

PostScript uses column-major form and uses a six element matrix rather
than a nine element one. The translation matrix above would produce this
concat command:

[1.0 0.0 0.0 1.0 10.0 20.0] concat

Similarly, it would be communicated to SVG via a group element:

<g transform="matrix(1.0, 0.0, 0.0, 1.0, 10.0, 20.0)"> ... </g>

4



wumpus-core also supports the regular affine transformations on Primitives
(the arbitrary matrix transformation transform is not supported). Transfor-
mations are implicitly interpreted in the standard affine frame - origin at (0,0)
and unit scaling vectors for the bases.

For paths, all the transformations are precomputed on the control points be-
fore the output is generated. For labels and ellipses the start point of the prim-
itive (baseline-left for label, center for ellipse) is transformed by wumpus-core

and matrix operations are transmitted to PostScript and SVG to transform the
actual drawing (wumpus-core has no access to the paths that describe character
glyphs so it cannot precompute transformations on them).

One consequence of transformations operating on the control points of prim-
itives is that scalings do not scale the tip of the drawing pen. If a path is stroked,
lifted to a Picture and then scaled the whole graphics state is effectively scaled
including the pen tip so the path is drawn with a thicker outline. However, if a
path is stoked and then scaled as a Primitive, the drawing pen is not scaled so
the path will be drawn with the regular line width.

5 Font handling

Font handling is quite primitive in wumpus-core . The bounding box of text
label is only estimated - based on the length of the label’s string rather than
the metrics of the individual letters encoded in the font. Accessing the glyph
metrics in a font would require a font loader to read TrueType font files. This
would be a significant development effort, probably larger than the effort put
into wumpus-core itself; for wumpus-core ’s intended use - producing diagrams
and pictures rather than high quality text - the primitive font handling is not
such a draw back.

In both PostScript and SVGmis-named fonts can cause somewhat inscrutable
printing anomalies - usually falling back to a default font but not always.
At worst, PostScript may do no subsequent drawing after a font load error.
wumpus-core uses scalefont in the generated PostScript, this semingly works
for any integer size and not just the regular font sizes (10, 12, 18, 24, 36).

The following table lists PostScript fonts and their SVG equivalents, the
package wumpus-basic includes a module Wumpus.Basic.SafeFonts encoding
the fonts in this list and matching them to their appropriate TextEncoder.

Note that the Symbol font, whilst incredibly useful, is a taboo with the W3C
and they do not condone its use in SVG or HTML. Likewise, certain browsers
reject it out of course.

5



PostScript name SVG name
Times-Roman Times New Roman
Times-Italic Times New Roman - style=”italic”
Times-Bold Times New Roman - font-weight=”bold”
Times-BoldItalic Times New Roman - style=”italic”, font-weight=”bold”
Helvetica Helvetica
Helvetica-Oblique Helvetica - style=”italic”
Helvetica-Bold Helvetica - font-weight=”bold”
Helvetica-Bold-Oblique Helvetica - style=”italic”, font-weight=”bold”
Courier Courier New
Courier-Oblique Courier New - style=”italic”
Courier-Bold Courier New - font-weight=”bold”
Courier-Bold-Oblique Courier New - style=”italic”, font-weight=”bold”
Symbol (Symbol - see text)

6 Acknowledgments

PostScript is a registered trademark of Adobe Systems Inc.

6


