-------------------------------------------------------------------------------- {-| Module : Map Copyright : (c) Daan Leijen 2002 License : BSD-style Maintainer : daan@cs.uu.nl Stability : provisional Portability : portable An efficient implementation of maps from keys to values (dictionaries). 1) The module exports some names that clash with the "Prelude" -- 'lookup', 'map', and 'filter'. If you want to use "Map" unqualified, these functions should be hidden. > import Prelude hiding (lookup,map,filter) > import Map Another solution is to use qualified names. This is also the only way how a "Map", "Set", and "MultiSet" can be used within one module. > import qualified Map > > ... Map.single "Paris" "France" Or, if you prefer a terse coding style: > import qualified Map as M > > ... M.single "Berlin" "Germany" 2) The implementation of "Map" is based on /size balanced/ binary trees (or trees of /bounded balance/) as described by: * Stephen Adams, \"/Efficient sets: a balancing act/\", Journal of Functional Programming 3(4):553-562, October 1993, . * J. Nievergelt and E.M. Reingold, \"/Binary search trees of bounded balance/\", SIAM journal of computing 2(1), March 1973. 3) Another implementation of finite maps based on size balanced trees exists as "Data.FiniteMap" in the Ghc libraries. The good part about this library is that it is highly tuned and thorougly tested. However, it is also fairly old, uses @#ifdef@'s all over the place and only supports the basic finite map operations. The "Map" module overcomes some of these issues: * It tries to export a more complete and consistent set of operations, like 'partition', 'adjust', 'mapAccum', 'elemAt' etc. * It uses the efficient /hedge/ algorithm for both 'union' and 'difference' (a /hedge/ algorithm is not applicable to 'intersection'). * It converts ordered lists in linear time ('fromAscList'). * It takes advantage of the module system with names like 'empty' instead of 'Data.FiniteMap.emptyFM'. * It sticks to portable Haskell, avoiding @#ifdef@'s and other magic. -} ---------------------------------------------------------------------------------- module Map ( -- * Map type Map -- instance Eq,Show -- * Operators , (!) -- * Query , isEmpty , size , member , lookup , find , findWithDefault -- * Construction , empty , single -- ** Insertion , insert , insertWith, insertWithKey, insertLookupWithKey -- ** Delete\/Update , delete , adjust , adjustWithKey , update , updateWithKey , updateLookupWithKey -- * Combine -- ** Union , union , unionWith , unionWithKey , unions -- ** Difference , difference , differenceWith , differenceWithKey -- ** Intersection , intersection , intersectionWith , intersectionWithKey -- * Traversal -- ** Map , map , mapWithKey , mapAccum , mapAccumWithKey -- ** Fold , fold , foldWithKey -- * Conversion , elems , keys , assocs -- ** Lists , toList , fromList , fromListWith , fromListWithKey -- ** Ordered lists , toAscList , fromAscList , fromAscListWith , fromAscListWithKey , fromDistinctAscList -- * Filter , filter , filterWithKey , partition , partitionWithKey , split , splitLookup -- * Subset , subset, subsetBy , properSubset, properSubsetBy -- * Indexed , lookupIndex , findIndex , elemAt , updateAt , deleteAt -- * Min\/Max , findMin , findMax , deleteMin , deleteMax , deleteFindMin , deleteFindMax , updateMin , updateMax , updateMinWithKey , updateMaxWithKey -- * Debugging , showTree , showTreeWith , valid ) where import Prelude hiding (lookup,map,filter) {- -- for quick check import qualified Prelude import qualified List import Debug.QuickCheck import List(nub,sort) -} {-------------------------------------------------------------------- Operators --------------------------------------------------------------------} infixl 9 ! -- | /O(log n)/. See 'find'. (!) :: Ord k => Map k a -> k -> a m ! k = find k m {-------------------------------------------------------------------- Size balanced trees. --------------------------------------------------------------------} -- | A Map from keys @k@ and values @a@. data Map k a = Tip | Bin !Size !k a !(Map k a) !(Map k a) type Size = Int {-------------------------------------------------------------------- Query --------------------------------------------------------------------} -- | /O(1)/. Is the map empty? isEmpty :: Map k a -> Bool isEmpty t = case t of Tip -> True Bin sz k x l r -> False -- | /O(1)/. The number of elements in the map. size :: Map k a -> Int size t = case t of Tip -> 0 Bin sz k x l r -> sz -- | /O(log n)/. Lookup the value of key in the map. lookup :: Ord k => k -> Map k a -> Maybe a lookup k t = case t of Tip -> Nothing Bin sz kx x l r -> case compare k kx of LT -> lookup k l GT -> lookup k r EQ -> Just x -- | /O(log n)/. Is the key a member of the map? member :: Ord k => k -> Map k a -> Bool member k m = case lookup k m of Nothing -> False Just x -> True -- | /O(log n)/. Find the value of a key. Calls @error@ when the element can not be found. find :: Ord k => k -> Map k a -> a find k m = case lookup k m of Nothing -> error "Map.find: element not in the map" Just x -> x -- | /O(log n)/. The expression @(findWithDefault def k map)@ returns the value of key @k@ or returns @def@ when -- the key is not in the map. findWithDefault :: Ord k => a -> k -> Map k a -> a findWithDefault def k m = case lookup k m of Nothing -> def Just x -> x {-------------------------------------------------------------------- Construction --------------------------------------------------------------------} -- | /O(1)/. Create an empty map. empty :: Map k a empty = Tip -- | /O(1)/. Create a map with a single element. single :: k -> a -> Map k a single k x = Bin 1 k x Tip Tip {-------------------------------------------------------------------- Insertion [insert] is the inlined version of [insertWith (\k x y -> x)] --------------------------------------------------------------------} -- | /O(log n)/. Insert a new key and value in the map. insert :: Ord k => k -> a -> Map k a -> Map k a insert kx x t = case t of Tip -> single kx x Bin sz ky y l r -> case compare kx ky of LT -> balance ky y (insert kx x l) r GT -> balance ky y l (insert kx x r) EQ -> Bin sz kx x l r -- | /O(log n)/. Insert with a combining function. insertWith :: Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a insertWith f k x m = insertWithKey (\k x y -> f x y) k x m -- | /O(log n)/. Insert with a combining function. insertWithKey :: Ord k => (k -> a -> a -> a) -> k -> a -> Map k a -> Map k a insertWithKey f kx x t = case t of Tip -> single kx x Bin sy ky y l r -> case compare kx ky of LT -> balance ky y (insertWithKey f kx x l) r GT -> balance ky y l (insertWithKey f kx x r) EQ -> Bin sy ky (f ky x y) l r -- | /O(log n)/. The expression (@insertLookupWithKey f k x map@) is a pair where -- the first element is equal to (@lookup k map@) and the second element -- equal to (@insertWithKey f k x map@). insertLookupWithKey :: Ord k => (k -> a -> a -> a) -> k -> a -> Map k a -> (Maybe a,Map k a) insertLookupWithKey f kx x t = case t of Tip -> (Nothing, single kx x) Bin sy ky y l r -> case compare kx ky of LT -> let (found,l') = insertLookupWithKey f kx x l in (found,balance ky y l' r) GT -> let (found,r') = insertLookupWithKey f kx x r in (found,balance ky y l r') EQ -> (Just y, Bin sy ky (f ky x y) l r) {-------------------------------------------------------------------- Deletion [delete] is the inlined version of [deleteWith (\k x -> Nothing)] --------------------------------------------------------------------} -- | /O(log n)/. Delete a key and its value from the map. When the key is not -- a member of the map, the original map is returned. delete :: Ord k => k -> Map k a -> Map k a delete k t = case t of Tip -> Tip Bin sx kx x l r -> case compare k kx of LT -> balance kx x (delete k l) r GT -> balance kx x l (delete k r) EQ -> glue l r -- | /O(log n)/. Adjust a value at a specific key. When the key is not -- a member of the map, the original map is returned. adjust :: Ord k => (a -> a) -> k -> Map k a -> Map k a adjust f k m = adjustWithKey (\k x -> f x) k m -- | /O(log n)/. Adjust a value at a specific key. When the key is not -- a member of the map, the original map is returned. adjustWithKey :: Ord k => (k -> a -> a) -> k -> Map k a -> Map k a adjustWithKey f k m = updateWithKey (\k x -> Just (f k x)) k m -- | /O(log n)/. The expression (@update f k map@) updates the value @x@ -- at @k@ (if it is in the map). If (@f x@) is @Nothing@, the element is -- deleted. If it is (@Just y@), the key @k@ is bound to the new value @y@. update :: Ord k => (a -> Maybe a) -> k -> Map k a -> Map k a update f k m = updateWithKey (\k x -> f x) k m -- | /O(log n)/. The expression (@update f k map@) updates the value @x@ -- at @k@ (if it is in the map). If (@f k x@) is @Nothing@, the element is -- deleted. If it is (@Just y@), the key @k@ is bound to the new value @y@. updateWithKey :: Ord k => (k -> a -> Maybe a) -> k -> Map k a -> Map k a updateWithKey f k t = case t of Tip -> Tip Bin sx kx x l r -> case compare k kx of LT -> balance kx x (updateWithKey f k l) r GT -> balance kx x l (updateWithKey f k r) EQ -> case f kx x of Just x' -> Bin sx kx x' l r Nothing -> glue l r -- | /O(log n)/. Lookup and update. updateLookupWithKey :: Ord k => (k -> a -> Maybe a) -> k -> Map k a -> (Maybe a,Map k a) updateLookupWithKey f k t = case t of Tip -> (Nothing,Tip) Bin sx kx x l r -> case compare k kx of LT -> let (found,l') = updateLookupWithKey f k l in (found,balance kx x l' r) GT -> let (found,r') = updateLookupWithKey f k r in (found,balance kx x l r') EQ -> case f kx x of Just x' -> (Just x',Bin sx kx x' l r) Nothing -> (Just x,glue l r) {-------------------------------------------------------------------- Indexing --------------------------------------------------------------------} -- | /O(log n)/. Return the /index/ of a key. The index is a number from -- /0/ up to, but not including, the 'size' of the map. Calls 'error' when -- the key is not a 'member' of the map. findIndex :: Ord k => k -> Map k a -> Int findIndex k t = case lookupIndex k t of Nothing -> error "Map.findIndex: element is not in the map" Just idx -> idx -- | /O(log n)/. Lookup the /index/ of a key. The index is a number from -- /0/ up to, but not including, the 'size' of the map. lookupIndex :: Ord k => k -> Map k a -> Maybe Int lookupIndex k t = lookup 0 t where lookup idx Tip = Nothing lookup idx (Bin _ kx x l r) = case compare k kx of LT -> lookup idx l GT -> lookup (idx + size l + 1) r EQ -> Just (idx + size l) -- | /O(log n)/. Retrieve an element by /index/. Calls 'error' when an -- invalid index is used. elemAt :: Int -> Map k a -> (k,a) elemAt i Tip = error "Map.elemAt: index out of range" elemAt i (Bin _ kx x l r) = case compare i sizeL of LT -> elemAt i l GT -> elemAt (i-sizeL-1) r EQ -> (kx,x) where sizeL = size l -- | /O(log n)/. Update the element at /index/. Calls 'error' when an -- invalid index is used. updateAt :: (k -> a -> Maybe a) -> Int -> Map k a -> Map k a updateAt f i Tip = error "Map.updateAt: index out of range" updateAt f i (Bin sx kx x l r) = case compare i sizeL of LT -> updateAt f i l GT -> updateAt f (i-sizeL-1) r EQ -> case f kx x of Just x' -> Bin sx kx x' l r Nothing -> glue l r where sizeL = size l -- | /O(log n)/. Delete the element at /index/. Defined as (@deleteAt i map = updateAt (\k x -> Nothing) i map@). deleteAt :: Int -> Map k a -> Map k a deleteAt i map = updateAt (\k x -> Nothing) i map {-------------------------------------------------------------------- Minimal, Maximal --------------------------------------------------------------------} -- | /O(log n)/. The minimal key of the map. findMin :: Map k a -> (k,a) findMin (Bin _ kx x Tip r) = (kx,x) findMin (Bin _ kx x l r) = findMin l findMin Tip = error "Map.findMin: empty tree has no minimal element" -- | /O(log n)/. The maximal key of the map. findMax :: Map k a -> (k,a) findMax (Bin _ kx x l Tip) = (kx,x) findMax (Bin _ kx x l r) = findMax r findMax Tip = error "Map.findMax: empty tree has no maximal element" -- | /O(log n)/. Delete the minimal key deleteMin :: Map k a -> Map k a deleteMin (Bin _ kx x Tip r) = r deleteMin (Bin _ kx x l r) = balance kx x (deleteMin l) r deleteMin Tip = Tip -- | /O(log n)/. Delete the maximal key deleteMax :: Map k a -> Map k a deleteMax (Bin _ kx x l Tip) = l deleteMax (Bin _ kx x l r) = balance kx x l (deleteMax r) deleteMax Tip = Tip -- | /O(log n)/. Update the minimal key updateMin :: (a -> Maybe a) -> Map k a -> Map k a updateMin f m = updateMinWithKey (\k x -> f x) m -- | /O(log n)/. Update the maximal key updateMax :: (a -> Maybe a) -> Map k a -> Map k a updateMax f m = updateMaxWithKey (\k x -> f x) m -- | /O(log n)/. Update the minimal key updateMinWithKey :: (k -> a -> Maybe a) -> Map k a -> Map k a updateMinWithKey f t = case t of Bin sx kx x Tip r -> case f kx x of Nothing -> r Just x' -> Bin sx kx x' Tip r Bin sx kx x l r -> balance kx x (updateMinWithKey f l) r Tip -> Tip -- | /O(log n)/. Update the maximal key updateMaxWithKey :: (k -> a -> Maybe a) -> Map k a -> Map k a updateMaxWithKey f t = case t of Bin sx kx x l Tip -> case f kx x of Nothing -> l Just x' -> Bin sx kx x' l Tip Bin sx kx x l r -> balance kx x l (updateMaxWithKey f r) Tip -> Tip {-------------------------------------------------------------------- Union. --------------------------------------------------------------------} -- | The union of a list of maps: (@unions == foldl union empty@). unions :: Ord k => [Map k a] -> Map k a unions ts = foldlStrict union empty ts -- | /O(n+m)/. -- The expression (@'union' t1 t2@) takes the left-biased union of @t1@ and @t2@. -- It prefers @t1@ when duplicate keys are encountered, ie. (@union == unionWith const@). -- The implementation uses the efficient /hedge-union/ algorithm. union :: Ord k => Map k a -> Map k a -> Map k a union Tip t2 = t2 union t1 Tip = t1 union t1 t2 -- hedge-union is more efficient on (bigset `union` smallset) | size t1 >= size t2 = hedgeUnionL (const LT) (const GT) t1 t2 | otherwise = hedgeUnionR (const LT) (const GT) t2 t1 -- left-biased hedge union hedgeUnionL cmplo cmphi t1 Tip = t1 hedgeUnionL cmplo cmphi Tip (Bin _ kx x l r) = join kx x (filterGt cmplo l) (filterLt cmphi r) hedgeUnionL cmplo cmphi (Bin _ kx x l r) t2 = join kx x (hedgeUnionL cmplo cmpkx l (trim cmplo cmpkx t2)) (hedgeUnionL cmpkx cmphi r (trim cmpkx cmphi t2)) where cmpkx k = compare kx k -- right-biased hedge union hedgeUnionR cmplo cmphi t1 Tip = t1 hedgeUnionR cmplo cmphi Tip (Bin _ kx x l r) = join kx x (filterGt cmplo l) (filterLt cmphi r) hedgeUnionR cmplo cmphi (Bin _ kx x l r) t2 = join kx newx (hedgeUnionR cmplo cmpkx l lt) (hedgeUnionR cmpkx cmphi r gt) where cmpkx k = compare kx k lt = trim cmplo cmpkx t2 (found,gt) = trimLookupLo kx cmphi t2 newx = case found of Nothing -> x Just y -> y {-------------------------------------------------------------------- Union with a combining function --------------------------------------------------------------------} -- | /O(n+m)/. Union with a combining function. The implementation uses the efficient /hedge-union/ algorithm. unionWith :: Ord k => (a -> a -> a) -> Map k a -> Map k a -> Map k a unionWith f m1 m2 = unionWithKey (\k x y -> f x y) m1 m2 -- | /O(n+m)/. -- Union with a combining function. The implementation uses the efficient /hedge-union/ algorithm. unionWithKey :: Ord k => (k -> a -> a -> a) -> Map k a -> Map k a -> Map k a unionWithKey f Tip t2 = t2 unionWithKey f t1 Tip = t1 unionWithKey f t1 t2 -- hedge-union is more efficient on (bigset `union` smallset) | size t1 >= size t2 = hedgeUnionWithKey f (const LT) (const GT) t1 t2 | otherwise = hedgeUnionWithKey flipf (const LT) (const GT) t2 t1 where flipf k x y = f k y x hedgeUnionWithKey f cmplo cmphi t1 Tip = t1 hedgeUnionWithKey f cmplo cmphi Tip (Bin _ kx x l r) = join kx x (filterGt cmplo l) (filterLt cmphi r) hedgeUnionWithKey f cmplo cmphi (Bin _ kx x l r) t2 = join kx newx (hedgeUnionWithKey f cmplo cmpkx l lt) (hedgeUnionWithKey f cmpkx cmphi r gt) where cmpkx k = compare kx k lt = trim cmplo cmpkx t2 (found,gt) = trimLookupLo kx cmphi t2 newx = case found of Nothing -> x Just y -> f kx x y {-------------------------------------------------------------------- Difference --------------------------------------------------------------------} -- | /O(n+m)/. Difference of two maps. -- The implementation uses an efficient /hedge/ algorithm comparable with /hedge-union/. difference :: Ord k => Map k a -> Map k a -> Map k a difference Tip t2 = Tip difference t1 Tip = t1 difference t1 t2 = hedgeDiff (const LT) (const GT) t1 t2 hedgeDiff cmplo cmphi Tip t = Tip hedgeDiff cmplo cmphi (Bin _ kx x l r) Tip = join kx x (filterGt cmplo l) (filterLt cmphi r) hedgeDiff cmplo cmphi t (Bin _ kx x l r) = merge (hedgeDiff cmplo cmpkx (trim cmplo cmpkx t) l) (hedgeDiff cmpkx cmphi (trim cmpkx cmphi t) r) where cmpkx k = compare kx k -- | /O(n+m)/. Difference with a combining function. -- The implementation uses an efficient /hedge/ algorithm comparable with /hedge-union/. differenceWith :: Ord k => (a -> a -> Maybe a) -> Map k a -> Map k a -> Map k a differenceWith f m1 m2 = differenceWithKey (\k x y -> f x y) m1 m2 -- | /O(n+m)/. Difference with a combining function. When two equal keys are -- encountered, the combining function is applied to the key and both values. -- If it returns @Nothing@, the element is discarded (proper set difference). If -- it returns (@Just y@), the element is updated with a new value @y@. -- The implementation uses an efficient /hedge/ algorithm comparable with /hedge-union/. differenceWithKey :: Ord k => (k -> a -> a -> Maybe a) -> Map k a -> Map k a -> Map k a differenceWithKey f Tip t2 = Tip differenceWithKey f t1 Tip = t1 differenceWithKey f t1 t2 = hedgeDiffWithKey f (const LT) (const GT) t1 t2 hedgeDiffWithKey f cmplo cmphi Tip t = Tip hedgeDiffWithKey f cmplo cmphi (Bin _ kx x l r) Tip = join kx x (filterGt cmplo l) (filterLt cmphi r) hedgeDiffWithKey f cmplo cmphi t (Bin _ kx x l r) = case found of Nothing -> merge tl tr Just y -> case f kx y x of Nothing -> merge tl tr Just z -> join kx z tl tr where cmpkx k = compare kx k lt = trim cmplo cmpkx t (found,gt) = trimLookupLo kx cmphi t tl = hedgeDiffWithKey f cmplo cmpkx lt l tr = hedgeDiffWithKey f cmpkx cmphi gt r {-------------------------------------------------------------------- Intersection --------------------------------------------------------------------} -- | /O(n+m)/. Intersection of two maps. The values in the first -- map are returned, i.e. (@intersection m1 m2 == intersectionWith const m1 m2@). intersection :: Ord k => Map k a -> Map k a -> Map k a intersection m1 m2 = intersectionWithKey (\k x y -> x) m1 m2 -- | /O(n+m)/. Intersection with a combining function. intersectionWith :: Ord k => (a -> a -> a) -> Map k a -> Map k a -> Map k a intersectionWith f m1 m2 = intersectionWithKey (\k x y -> f x y) m1 m2 -- | /O(n+m)/. Intersection with a combining function. intersectionWithKey :: Ord k => (k -> a -> a -> a) -> Map k a -> Map k a -> Map k a intersectionWithKey f Tip t = Tip intersectionWithKey f t Tip = Tip intersectionWithKey f t1 t2 -- intersection is more efficient on (bigset `intersection` smallset) | size t1 >= size t2 = intersectWithKey f t1 t2 | otherwise = intersectWithKey flipf t2 t1 where flipf k x y = f k y x intersectWithKey f Tip t = Tip intersectWithKey f t Tip = Tip intersectWithKey f t (Bin _ kx x l r) = case found of Nothing -> merge tl tr Just y -> join kx (f kx y x) tl tr where (found,lt,gt) = splitLookup kx t tl = intersectWithKey f lt l tr = intersectWithKey f gt r {-------------------------------------------------------------------- Subset --------------------------------------------------------------------} -- | /O(n+m)/. -- This function is defined as (@subset = subsetBy (==)@). subset :: (Ord k,Eq a) => Map k a -> Map k a -> Bool subset m1 m2 = subsetBy (==) m1 m2 {- | /O(n+m)/. The expression (@subsetBy f t1 t2@) returns @True@ if all keys in @t1@ are in tree @t2@, and when @f@ returns @True@ when applied to their respective values. For example, the following expressions are all @True@. > subsetBy (==) (fromList [('a',1)]) (fromList [('a',1),('b',2)]) > subsetBy (<=) (fromList [('a',1)]) (fromList [('a',1),('b',2)]) > subsetBy (==) (fromList [('a',1),('b',2)]) (fromList [('a',1),('b',2)]) But the following are all @False@: > subsetBy (==) (fromList [('a',2)]) (fromList [('a',1),('b',2)]) > subsetBy (<) (fromList [('a',1)]) (fromList [('a',1),('b',2)]) > subsetBy (==) (fromList [('a',1),('b',2)]) (fromList [('a',1)]) -} subsetBy :: Ord k => (a->a->Bool) -> Map k a -> Map k a -> Bool subsetBy f t1 t2 = (size t1 <= size t2) && (subset' f t1 t2) subset' f Tip t = True subset' f t Tip = False subset' f (Bin _ kx x l r) t = case found of Nothing -> False Just y -> f x y && subset' f l lt && subset' f r gt where (found,lt,gt) = splitLookup kx t -- | /O(n+m)/. Is this a proper subset? (ie. a subset but not equal). -- Defined as (@properSubset = properSubsetBy (==)@). properSubset :: (Ord k,Eq a) => Map k a -> Map k a -> Bool properSubset m1 m2 = properSubsetBy (==) m1 m2 {- | /O(n+m)/. Is this a proper subset? (ie. a subset but not equal). The expression (@properSubsetBy f m1 m2@) returns @True@ when @m1@ and @m2@ are not equal, all keys in @m1@ are in @m2@, and when @f@ returns @True@ when applied to their respective values. For example, the following expressions are all @True@. > properSubsetBy (==) (fromList [(1,1)]) (fromList [(1,1),(2,2)]) > properSubsetBy (<=) (fromList [(1,1)]) (fromList [(1,1),(2,2)]) But the following are all @False@: > properSubsetBy (==) (fromList [(1,1),(2,2)]) (fromList [(1,1),(2,2)]) > properSubsetBy (==) (fromList [(1,1),(2,2)]) (fromList [(1,1)]) > properSubsetBy (<) (fromList [(1,1)]) (fromList [(1,1),(2,2)]) -} properSubsetBy :: (Ord k,Eq a) => (a -> a -> Bool) -> Map k a -> Map k a -> Bool properSubsetBy f t1 t2 = (size t1 < size t2) && (subset' f t1 t2) {-------------------------------------------------------------------- Filter and partition --------------------------------------------------------------------} -- | /O(n)/. Filter all values that satisfy the predicate. filter :: Ord k => (a -> Bool) -> Map k a -> Map k a filter p m = filterWithKey (\k x -> p x) m -- | /O(n)/. Filter all keys\values that satisfy the predicate. filterWithKey :: Ord k => (k -> a -> Bool) -> Map k a -> Map k a filterWithKey p Tip = Tip filterWithKey p (Bin _ kx x l r) | p kx x = join kx x (filterWithKey p l) (filterWithKey p r) | otherwise = merge (filterWithKey p l) (filterWithKey p r) -- | /O(n)/. partition the map according to a predicate. The first -- map contains all elements that satisfy the predicate, the second all -- elements that fail the predicate. See also 'split'. partition :: Ord k => (a -> Bool) -> Map k a -> (Map k a,Map k a) partition p m = partitionWithKey (\k x -> p x) m -- | /O(n)/. partition the map according to a predicate. The first -- map contains all elements that satisfy the predicate, the second all -- elements that fail the predicate. See also 'split'. partitionWithKey :: Ord k => (k -> a -> Bool) -> Map k a -> (Map k a,Map k a) partitionWithKey p Tip = (Tip,Tip) partitionWithKey p (Bin _ kx x l r) | p kx x = (join kx x l1 r1,merge l2 r2) | otherwise = (merge l1 r1,join kx x l2 r2) where (l1,l2) = partitionWithKey p l (r1,r2) = partitionWithKey p r {-------------------------------------------------------------------- Mapping --------------------------------------------------------------------} -- | /O(n)/. Map a function over all values in the map. map :: (a -> b) -> Map k a -> Map k b map f m = mapWithKey (\k x -> f x) m -- | /O(n)/. Map a function over all values in the map. mapWithKey :: (k -> a -> b) -> Map k a -> Map k b mapWithKey f Tip = Tip mapWithKey f (Bin sx kx x l r) = Bin sx kx (f kx x) (mapWithKey f l) (mapWithKey f r) -- | /O(n)/. The function @mapAccum@ threads an accumulating -- argument through the map in an unspecified order. mapAccum :: (a -> b -> (a,c)) -> a -> Map k b -> (a,Map k c) mapAccum f a m = mapAccumWithKey (\a k x -> f a x) a m -- | /O(n)/. The function @mapAccumWithKey@ threads an accumulating -- argument through the map in unspecified order. (= ascending pre-order) mapAccumWithKey :: (a -> k -> b -> (a,c)) -> a -> Map k b -> (a,Map k c) mapAccumWithKey f a t = mapAccumL f a t -- | /O(n)/. The function @mapAccumL@ threads an accumulating -- argument throught the map in (ascending) pre-order. mapAccumL :: (a -> k -> b -> (a,c)) -> a -> Map k b -> (a,Map k c) mapAccumL f a t = case t of Tip -> (a,Tip) Bin sx kx x l r -> let (a1,l') = mapAccumL f a l (a2,x') = f a1 kx x (a3,r') = mapAccumL f a2 r in (a3,Bin sx kx x' l' r') -- | /O(n)/. The function @mapAccumR@ threads an accumulating -- argument throught the map in (descending) post-order. mapAccumR :: (a -> k -> b -> (a,c)) -> a -> Map k b -> (a,Map k c) mapAccumR f a t = case t of Tip -> (a,Tip) Bin sx kx x l r -> let (a1,r') = mapAccumR f a r (a2,x') = f a1 kx x (a3,l') = mapAccumR f a2 l in (a3,Bin sx kx x' l' r') {-------------------------------------------------------------------- Folds --------------------------------------------------------------------} -- | /O(n)/. Fold the map in an unspecified order. (= descending post-order). fold :: (a -> b -> b) -> b -> Map k a -> b fold f z m = foldWithKey (\k x z -> f x z) z m -- | /O(n)/. Fold the map in an unspecified order. (= descending post-order). foldWithKey :: (k -> a -> b -> b) -> b -> Map k a -> b foldWithKey f z t = foldR f z t -- | /O(n)/. In-order fold. foldI :: (k -> a -> b -> b -> b) -> b -> Map k a -> b foldI f z Tip = z foldI f z (Bin _ kx x l r) = f kx x (foldI f z l) (foldI f z r) -- | /O(n)/. Post-order fold. foldR :: (k -> a -> b -> b) -> b -> Map k a -> b foldR f z Tip = z foldR f z (Bin _ kx x l r) = foldR f (f kx x (foldR f z r)) l -- | /O(n)/. Pre-order fold. foldL :: (b -> k -> a -> b) -> b -> Map k a -> b foldL f z Tip = z foldL f z (Bin _ kx x l r) = foldL f (f (foldL f z l) kx x) r {-------------------------------------------------------------------- List variations --------------------------------------------------------------------} -- | /O(n)/. Return all elements of the map. elems :: Map k a -> [a] elems m = [x | (k,x) <- assocs m] -- | /O(n)/. Return all keys of the map. keys :: Map k a -> [k] keys m = [k | (k,x) <- assocs m] -- | /O(n)/. Return all key\/value pairs in the map. assocs :: Map k a -> [(k,a)] assocs m = toList m {-------------------------------------------------------------------- Lists use [foldlStrict] to reduce demand on the control-stack --------------------------------------------------------------------} -- | /O(n*log n)/. Build a map from a list of key\/value pairs. See also 'fromAscList'. fromList :: Ord k => [(k,a)] -> Map k a fromList xs = foldlStrict ins empty xs where ins t (k,x) = insert k x t -- | /O(n*log n)/. Build a map from a list of key\/value pairs with a combining function. See also 'fromAscListWith'. fromListWith :: Ord k => (a -> a -> a) -> [(k,a)] -> Map k a fromListWith f xs = fromListWithKey (\k x y -> f x y) xs -- | /O(n*log n)/. Build a map from a list of key\/value pairs with a combining function. See also 'fromAscListWithKey'. fromListWithKey :: Ord k => (k -> a -> a -> a) -> [(k,a)] -> Map k a fromListWithKey f xs = foldlStrict ins empty xs where ins t (k,x) = insertWithKey f k x t -- | /O(n)/. Convert to a list of key\/value pairs. toList :: Map k a -> [(k,a)] toList t = toAscList t -- | /O(n)/. Convert to an ascending list. toAscList :: Map k a -> [(k,a)] toAscList t = foldR (\k x xs -> (k,x):xs) [] t -- | /O(n)/. toDescList :: Map k a -> [(k,a)] toDescList t = foldL (\xs k x -> (k,x):xs) [] t {-------------------------------------------------------------------- Building trees from ascending/descending lists can be done in linear time. Note that if [xs] is ascending that: fromAscList xs == fromList xs fromAscListWith f xs == fromListWith f xs --------------------------------------------------------------------} -- | /O(n)/. Build a map from an ascending list in linear time. fromAscList :: Eq k => [(k,a)] -> Map k a fromAscList xs = fromAscListWithKey (\k x y -> x) xs -- | /O(n)/. Build a map from an ascending list in linear time with a combining function for equal keys. fromAscListWith :: Eq k => (a -> a -> a) -> [(k,a)] -> Map k a fromAscListWith f xs = fromAscListWithKey (\k x y -> f x y) xs -- | /O(n)/. Build a map from an ascending list in linear time with a combining function for equal keys fromAscListWithKey :: Eq k => (k -> a -> a -> a) -> [(k,a)] -> Map k a fromAscListWithKey f xs = fromDistinctAscList (combineEq f xs) where -- [combineEq f xs] combines equal elements with function [f] in an ordered list [xs] combineEq f xs = case xs of [] -> [] [x] -> [x] (x:xx) -> combineEq' x xx combineEq' z [] = [z] combineEq' z@(kz,zz) (x@(kx,xx):xs) | kx==kz = let yy = f kx xx zz in combineEq' (kx,yy) xs | otherwise = z:combineEq' x xs -- | /O(n)/. Build a map from an ascending list of distinct elements in linear time. fromDistinctAscList :: [(k,a)] -> Map k a fromDistinctAscList xs = build const (length xs) xs where -- 1) use continutations so that we use heap space instead of stack space. -- 2) special case for n==5 to build bushier trees. build c 0 xs = c Tip xs build c 5 xs = case xs of ((k1,x1):(k2,x2):(k3,x3):(k4,x4):(k5,x5):xx) -> c (bin k4 x4 (bin k2 x2 (single k1 x1) (single k3 x3)) (single k5 x5)) xx build c n xs = seq nr $ build (buildR nr c) nl xs where nl = n `div` 2 nr = n - nl - 1 buildR n c l ((k,x):ys) = build (buildB l k x c) n ys buildB l k x c r zs = c (bin k x l r) zs {-------------------------------------------------------------------- Utility functions that return sub-ranges of the original tree. Some functions take a comparison function as argument to allow comparisons against infinite values. A function [cmplo k] should be read as [compare lo k]. [trim cmplo cmphi t] A tree that is either empty or where [cmplo k == LT] and [cmphi k == GT] for the key [k] of the root. [filterGt cmp t] A tree where for all keys [k]. [cmp k == LT] [filterLt cmp t] A tree where for all keys [k]. [cmp k == GT] [split k t] Returns two trees [l] and [r] where all keys in [l] are <[k] and all keys in [r] are >[k]. [splitLookup k t] Just like [split] but also returns whether [k] was found in the tree. --------------------------------------------------------------------} {-------------------------------------------------------------------- [trim lo hi t] trims away all subtrees that surely contain no values between the range [lo] to [hi]. The returned tree is either empty or the key of the root is between @lo@ and @hi@. --------------------------------------------------------------------} trim :: (k -> Ordering) -> (k -> Ordering) -> Map k a -> Map k a trim cmplo cmphi Tip = Tip trim cmplo cmphi t@(Bin sx kx x l r) = case cmplo kx of LT -> case cmphi kx of GT -> t le -> trim cmplo cmphi l ge -> trim cmplo cmphi r trimLookupLo :: Ord k => k -> (k -> Ordering) -> Map k a -> (Maybe a, Map k a) trimLookupLo lo cmphi Tip = (Nothing,Tip) trimLookupLo lo cmphi t@(Bin sx kx x l r) = case compare lo kx of LT -> case cmphi kx of GT -> (lookup lo t, t) le -> trimLookupLo lo cmphi l GT -> trimLookupLo lo cmphi r EQ -> (Just x,trim (compare lo) cmphi r) {-------------------------------------------------------------------- [filterGt k t] filter all keys >[k] from tree [t] [filterLt k t] filter all keys <[k] from tree [t] --------------------------------------------------------------------} filterGt :: Ord k => (k -> Ordering) -> Map k a -> Map k a filterGt cmp Tip = Tip filterGt cmp (Bin sx kx x l r) = case cmp kx of LT -> join kx x (filterGt cmp l) r GT -> filterGt cmp r EQ -> r filterLt :: Ord k => (k -> Ordering) -> Map k a -> Map k a filterLt cmp Tip = Tip filterLt cmp (Bin sx kx x l r) = case cmp kx of LT -> filterLt cmp l GT -> join kx x l (filterLt cmp r) EQ -> l {-------------------------------------------------------------------- Split --------------------------------------------------------------------} -- | /O(log n)/. The expression (@split k map@) is a pair @(map1,map2)@ where -- the keys in @map1@ are smaller than @k@ and the keys in @map2@ larger than @k@. split :: Ord k => k -> Map k a -> (Map k a,Map k a) split k Tip = (Tip,Tip) split k (Bin sx kx x l r) = case compare k kx of LT -> let (lt,gt) = split k l in (lt,join kx x gt r) GT -> let (lt,gt) = split k r in (join kx x l lt,gt) EQ -> (l,r) -- | /O(log n)/. The expression (@splitLookup k map@) splits a map just -- like 'split' but also returns @lookup k map@. splitLookup :: Ord k => k -> Map k a -> (Maybe a,Map k a,Map k a) splitLookup k Tip = (Nothing,Tip,Tip) splitLookup k (Bin sx kx x l r) = case compare k kx of LT -> let (z,lt,gt) = splitLookup k l in (z,lt,join kx x gt r) GT -> let (z,lt,gt) = splitLookup k r in (z,join kx x l lt,gt) EQ -> (Just x,l,r) {-------------------------------------------------------------------- Utility functions that maintain the balance properties of the tree. All constructors assume that all values in [l] < [k] and all values in [r] > [k], and that [l] and [r] are valid trees. In order of sophistication: [Bin sz k x l r] The type constructor. [bin k x l r] Maintains the correct size, assumes that both [l] and [r] are balanced with respect to each other. [balance k x l r] Restores the balance and size. Assumes that the original tree was balanced and that [l] or [r] has changed by at most one element. [join k x l r] Restores balance and size. Furthermore, we can construct a new tree from two trees. Both operations assume that all values in [l] < all values in [r] and that [l] and [r] are valid: [glue l r] Glues [l] and [r] together. Assumes that [l] and [r] are already balanced with respect to each other. [merge l r] Merges two trees and restores balance. Note: in contrast to Adam's paper, we use (<=) comparisons instead of (<) comparisons in [join], [merge] and [balance]. Quickcheck (on [difference]) showed that this was necessary in order to maintain the invariants. It is quite unsatisfactory that I haven't been able to find out why this is actually the case! Fortunately, it doesn't hurt to be a bit more conservative. --------------------------------------------------------------------} {-------------------------------------------------------------------- Join --------------------------------------------------------------------} join :: Ord k => k -> a -> Map k a -> Map k a -> Map k a join kx x Tip r = insertMin kx x r join kx x l Tip = insertMax kx x l join kx x l@(Bin sizeL ky y ly ry) r@(Bin sizeR kz z lz rz) | delta*sizeL <= sizeR = balance kz z (join kx x l lz) rz | delta*sizeR <= sizeL = balance ky y ly (join kx x ry r) | otherwise = bin kx x l r -- insertMin and insertMax don't perform potentially expensive comparisons. insertMax,insertMin :: k -> a -> Map k a -> Map k a insertMax kx x t = case t of Tip -> single kx x Bin sz ky y l r -> balance ky y l (insertMax kx x r) insertMin kx x t = case t of Tip -> single kx x Bin sz ky y l r -> balance ky y (insertMin kx x l) r {-------------------------------------------------------------------- [merge l r]: merges two trees. --------------------------------------------------------------------} merge :: Map k a -> Map k a -> Map k a merge Tip r = r merge l Tip = l merge l@(Bin sizeL kx x lx rx) r@(Bin sizeR ky y ly ry) | delta*sizeL <= sizeR = balance ky y (merge l ly) ry | delta*sizeR <= sizeL = balance kx x lx (merge rx r) | otherwise = glue l r {-------------------------------------------------------------------- [glue l r]: glues two trees together. Assumes that [l] and [r] are already balanced with respect to each other. --------------------------------------------------------------------} glue :: Map k a -> Map k a -> Map k a glue Tip r = r glue l Tip = l glue l r | size l > size r = let ((km,m),l') = deleteFindMax l in balance km m l' r | otherwise = let ((km,m),r') = deleteFindMin r in balance km m l r' -- | /O(log n)/. Delete and find the minimal element. deleteFindMin :: Map k a -> ((k,a),Map k a) deleteFindMin t = case t of Bin _ k x Tip r -> ((k,x),r) Bin _ k x l r -> let (km,l') = deleteFindMin l in (km,balance k x l' r) Tip -> (error "Map.deleteFindMin: can not return the minimal element of an empty map", Tip) -- | /O(log n)/. Delete and find the maximal element. deleteFindMax :: Map k a -> ((k,a),Map k a) deleteFindMax t = case t of Bin _ k x l Tip -> ((k,x),l) Bin _ k x l r -> let (km,r') = deleteFindMax r in (km,balance k x l r') Tip -> (error "Map.deleteFindMax: can not return the maximal element of an empty map", Tip) {-------------------------------------------------------------------- [balance l x r] balances two trees with value x. The sizes of the trees should balance after decreasing the size of one of them. (a rotation). [delta] is the maximal relative difference between the sizes of two trees, it corresponds with the [w] in Adams' paper. [ratio] is the ratio between an outer and inner sibling of the heavier subtree in an unbalanced setting. It determines whether a double or single rotation should be performed to restore balance. It is correspondes with the inverse of $\alpha$ in Adam's article. Note that: - [delta] should be larger than 4.646 with a [ratio] of 2. - [delta] should be larger than 3.745 with a [ratio] of 1.534. - A lower [delta] leads to a more 'perfectly' balanced tree. - A higher [delta] performs less rebalancing. - Balancing is automaic for random data and a balancing scheme is only necessary to avoid pathological worst cases. Almost any choice will do, and in practice, a rather large [delta] may perform better than smaller one. Note: in contrast to Adam's paper, we use a ratio of (at least) [2] to decide whether a single or double rotation is needed. Allthough he actually proves that this ratio is needed to maintain the invariants, his implementation uses an invalid ratio of [1]. --------------------------------------------------------------------} delta,ratio :: Int delta = 5 ratio = 2 balance :: k -> a -> Map k a -> Map k a -> Map k a balance k x l r | sizeL + sizeR <= 1 = Bin sizeX k x l r | sizeR >= delta*sizeL = rotateL k x l r | sizeL >= delta*sizeR = rotateR k x l r | otherwise = Bin sizeX k x l r where sizeL = size l sizeR = size r sizeX = sizeL + sizeR + 1 -- rotate rotateL k x l r@(Bin _ _ _ ly ry) | size ly < ratio*size ry = singleL k x l r | otherwise = doubleL k x l r rotateR k x l@(Bin _ _ _ ly ry) r | size ry < ratio*size ly = singleR k x l r | otherwise = doubleR k x l r -- basic rotations singleL k1 x1 t1 (Bin _ k2 x2 t2 t3) = bin k2 x2 (bin k1 x1 t1 t2) t3 singleR k1 x1 (Bin _ k2 x2 t1 t2) t3 = bin k2 x2 t1 (bin k1 x1 t2 t3) doubleL k1 x1 t1 (Bin _ k2 x2 (Bin _ k3 x3 t2 t3) t4) = bin k3 x3 (bin k1 x1 t1 t2) (bin k2 x2 t3 t4) doubleR k1 x1 (Bin _ k2 x2 t1 (Bin _ k3 x3 t2 t3)) t4 = bin k3 x3 (bin k2 x2 t1 t2) (bin k1 x1 t3 t4) {-------------------------------------------------------------------- The bin constructor maintains the size of the tree --------------------------------------------------------------------} bin :: k -> a -> Map k a -> Map k a -> Map k a bin k x l r = Bin (size l + size r + 1) k x l r {-------------------------------------------------------------------- Eq converts the tree to a list. In a lazy setting, this actually seems one of the faster methods to compare two trees and it is certainly the simplest :-) --------------------------------------------------------------------} instance (Eq k,Eq a) => Eq (Map k a) where t1 == t2 = (size t1 == size t2) && (toAscList t1 == toAscList t2) {-------------------------------------------------------------------- Functor --------------------------------------------------------------------} instance Functor (Map k) where fmap f m = map f m {-------------------------------------------------------------------- Show --------------------------------------------------------------------} instance (Show k, Show a) => Show (Map k a) where showsPrec d m = showMap (toAscList m) showMap :: (Show k,Show a) => [(k,a)] -> ShowS showMap [] = showString "{}" showMap (x:xs) = showChar '{' . showElem x . showTail xs where showTail [] = showChar '}' showTail (x:xs) = showChar ',' . showElem x . showTail xs showElem (k,x) = shows k . showString ":=" . shows x -- | /O(n)/. Show the tree that implements the map. The tree is shown -- in a compressed, hanging format. showTree :: (Show k,Show a) => Map k a -> String showTree m = showTreeWith showElem True False m where showElem k x = show k ++ ":=" ++ show x {- | /O(n)/. The expression (@showTreeWith showelem hang wide map@) shows the tree that implements the map. Elements are shown using the @showElem@ function. If @hang@ is @True@, a /hanging/ tree is shown otherwise a rotated tree is shown. If @wide@ is true, an extra wide version is shown. > Map> putStrLn $ showTreeWith (\k x -> show (k,x)) True False $ fromDistinctAscList [(x,()) | x <- [1..5]] > (4,()) > +--(2,()) > | +--(1,()) > | +--(3,()) > +--(5,()) > > Map> putStrLn $ showTreeWith (\k x -> show (k,x)) True True $ fromDistinctAscList [(x,()) | x <- [1..5]] > (4,()) > | > +--(2,()) > | | > | +--(1,()) > | | > | +--(3,()) > | > +--(5,()) > > Map> putStrLn $ showTreeWith (\k x -> show (k,x)) False True $ fromDistinctAscList [(x,()) | x <- [1..5]] > +--(5,()) > | > (4,()) > | > | +--(3,()) > | | > +--(2,()) > | > +--(1,()) -} showTreeWith :: (k -> a -> String) -> Bool -> Bool -> Map k a -> String showTreeWith showelem hang wide t | hang = (showsTreeHang showelem wide [] t) "" | otherwise = (showsTree showelem wide [] [] t) "" showsTree :: (k -> a -> String) -> Bool -> [String] -> [String] -> Map k a -> ShowS showsTree showelem wide lbars rbars t = case t of Tip -> showsBars lbars . showString "|\n" Bin sz kx x Tip Tip -> showsBars lbars . showString (showelem kx x) . showString "\n" Bin sz kx x l r -> showsTree showelem wide (withBar rbars) (withEmpty rbars) r . showWide wide rbars . showsBars lbars . showString (showelem kx x) . showString "\n" . showWide wide lbars . showsTree showelem wide (withEmpty lbars) (withBar lbars) l showsTreeHang :: (k -> a -> String) -> Bool -> [String] -> Map k a -> ShowS showsTreeHang showelem wide bars t = case t of Tip -> showsBars bars . showString "|\n" Bin sz kx x Tip Tip -> showsBars bars . showString (showelem kx x) . showString "\n" Bin sz kx x l r -> showsBars bars . showString (showelem kx x) . showString "\n" . showWide wide bars . showsTreeHang showelem wide (withBar bars) l . showWide wide bars . showsTreeHang showelem wide (withEmpty bars) r showWide wide bars | wide = showString (concat (reverse bars)) . showString "|\n" | otherwise = id showsBars :: [String] -> ShowS showsBars bars = case bars of [] -> id _ -> showString (concat (reverse (tail bars))) . showString node node = "+--" withBar bars = "| ":bars withEmpty bars = " ":bars {-------------------------------------------------------------------- Assertions --------------------------------------------------------------------} -- | /O(n)/. Test if the internal map structure is valid. valid :: Ord k => Map k a -> Bool valid t = balanced t && ordered t && validsize t ordered t = bounded (const True) (const True) t where bounded lo hi t = case t of Tip -> True Bin sz kx x l r -> (lo kx) && (hi kx) && bounded lo (kx) hi r -- | Exported only for "Debug.QuickCheck" balanced :: Map k a -> Bool balanced t = case t of Tip -> True Bin sz kx x l r -> (size l + size r <= 1 || (size l <= delta*size r && size r <= delta*size l)) && balanced l && balanced r validsize t = (realsize t == Just (size t)) where realsize t = case t of Tip -> Just 0 Bin sz kx x l r -> case (realsize l,realsize r) of (Just n,Just m) | n+m+1 == sz -> Just sz other -> Nothing {-------------------------------------------------------------------- Utilities --------------------------------------------------------------------} foldlStrict f z xs = case xs of [] -> z (x:xx) -> let z' = f z x in seq z' (foldlStrict f z' xx) {- {-------------------------------------------------------------------- Testing --------------------------------------------------------------------} testTree xs = fromList [(x,"*") | x <- xs] test1 = testTree [1..20] test2 = testTree [30,29..10] test3 = testTree [1,4,6,89,2323,53,43,234,5,79,12,9,24,9,8,423,8,42,4,8,9,3] {-------------------------------------------------------------------- QuickCheck --------------------------------------------------------------------} qcheck prop = check config prop where config = Config { configMaxTest = 500 , configMaxFail = 5000 , configSize = \n -> (div n 2 + 3) , configEvery = \n args -> let s = show n in s ++ [ '\b' | _ <- s ] } {-------------------------------------------------------------------- Arbitrary, reasonably balanced trees --------------------------------------------------------------------} instance (Enum k,Arbitrary a) => Arbitrary (Map k a) where arbitrary = sized (arbtree 0 maxkey) where maxkey = 10000 arbtree :: (Enum k,Arbitrary a) => Int -> Int -> Int -> Gen (Map k a) arbtree lo hi n | n <= 0 = return Tip | lo >= hi = return Tip | otherwise = do{ x <- arbitrary ; i <- choose (lo,hi) ; m <- choose (1,30) ; let (ml,mr) | m==(1::Int)= (1,2) | m==2 = (2,1) | m==3 = (1,1) | otherwise = (2,2) ; l <- arbtree lo (i-1) (n `div` ml) ; r <- arbtree (i+1) hi (n `div` mr) ; return (bin (toEnum i) x l r) } {-------------------------------------------------------------------- Valid tree's --------------------------------------------------------------------} forValid :: (Show k,Enum k,Show a,Arbitrary a,Testable b) => (Map k a -> b) -> Property forValid f = forAll arbitrary $ \t -> -- classify (balanced t) "balanced" $ classify (size t == 0) "empty" $ classify (size t > 0 && size t <= 10) "small" $ classify (size t > 10 && size t <= 64) "medium" $ classify (size t > 64) "large" $ balanced t ==> f t forValidIntTree :: Testable a => (Map Int Int -> a) -> Property forValidIntTree f = forValid f forValidUnitTree :: Testable a => (Map Int () -> a) -> Property forValidUnitTree f = forValid f prop_Valid = forValidUnitTree $ \t -> valid t {-------------------------------------------------------------------- Single, Insert, Delete --------------------------------------------------------------------} prop_Single :: Int -> Int -> Bool prop_Single k x = (insert k x empty == single k x) prop_InsertValid :: Int -> Property prop_InsertValid k = forValidUnitTree $ \t -> valid (insert k () t) prop_InsertDelete :: Int -> Map Int () -> Property prop_InsertDelete k t = (lookup k t == Nothing) ==> delete k (insert k () t) == t prop_DeleteValid :: Int -> Property prop_DeleteValid k = forValidUnitTree $ \t -> valid (delete k (insert k () t)) {-------------------------------------------------------------------- Balance --------------------------------------------------------------------} prop_Join :: Int -> Property prop_Join k = forValidUnitTree $ \t -> let (l,r) = split k t in valid (join k () l r) prop_Merge :: Int -> Property prop_Merge k = forValidUnitTree $ \t -> let (l,r) = split k t in valid (merge l r) {-------------------------------------------------------------------- Union --------------------------------------------------------------------} prop_UnionValid :: Property prop_UnionValid = forValidUnitTree $ \t1 -> forValidUnitTree $ \t2 -> valid (union t1 t2) prop_UnionInsert :: Int -> Int -> Map Int Int -> Bool prop_UnionInsert k x t = union (single k x) t == insert k x t prop_UnionAssoc :: Map Int Int -> Map Int Int -> Map Int Int -> Bool prop_UnionAssoc t1 t2 t3 = union t1 (union t2 t3) == union (union t1 t2) t3 prop_UnionComm :: Map Int Int -> Map Int Int -> Bool prop_UnionComm t1 t2 = (union t1 t2 == unionWith (\x y -> y) t2 t1) prop_UnionWithValid = forValidIntTree $ \t1 -> forValidIntTree $ \t2 -> valid (unionWithKey (\k x y -> x+y) t1 t2) prop_UnionWith :: [(Int,Int)] -> [(Int,Int)] -> Bool prop_UnionWith xs ys = sum (elems (unionWith (+) (fromListWith (+) xs) (fromListWith (+) ys))) == (sum (Prelude.map snd xs) + sum (Prelude.map snd ys)) prop_DiffValid = forValidUnitTree $ \t1 -> forValidUnitTree $ \t2 -> valid (difference t1 t2) prop_Diff :: [(Int,Int)] -> [(Int,Int)] -> Bool prop_Diff xs ys = List.sort (keys (difference (fromListWith (+) xs) (fromListWith (+) ys))) == List.sort ((List.\\) (nub (Prelude.map fst xs)) (nub (Prelude.map fst ys))) prop_IntValid = forValidUnitTree $ \t1 -> forValidUnitTree $ \t2 -> valid (intersection t1 t2) prop_Int :: [(Int,Int)] -> [(Int,Int)] -> Bool prop_Int xs ys = List.sort (keys (intersection (fromListWith (+) xs) (fromListWith (+) ys))) == List.sort (nub ((List.intersect) (Prelude.map fst xs) (Prelude.map fst ys))) {-------------------------------------------------------------------- Lists --------------------------------------------------------------------} prop_Ordered = forAll (choose (5,100)) $ \n -> let xs = [(x,()) | x <- [0..n::Int]] in fromAscList xs == fromList xs prop_List :: [Int] -> Bool prop_List xs = (sort (nub xs) == [x | (x,()) <- toList (fromList [(x,()) | x <- xs])]) -}