{-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE DeriveDataTypeable #-} -- | This module provides both a native Haskell solution for parsing XML -- documents into a stream of events, and a set of parser combinators for -- dealing with a stream of events. -- -- The important thing to know about the combinators is that they do /not/ work -- on the fully-powered 'Event' datatype; rather, this module defines an -- 'SEvent' datatype which only deals with tags, attributes and content. For -- most uses, this is sufficient. If you need to parse doctypes, instructions -- or contents, you will not be able to use the combinators. -- -- As a simple example, if you have the following XML file: -- -- > -- > -- > Michael -- > Eliezer -- > -- -- Then this code: -- -- > {-# LANGUAGE OverloadedStrings #-} -- > import Text.XML.Enumerator.Parse -- > import Data.Text.Lazy (Text, unpack) -- > -- > data Person = Person { age :: Int, name :: Text } -- > deriving Show -- > -- > parsePerson = tag' "person" (requireAttr "age") $ \age -> do -- > name <- content' -- > return $ Person (read $ unpack age) name -- > -- > parsePeople = tag'' "people" $ many parsePerson -- > -- > main = parseFile_ "people.xml" (const Nothing) $ force "people required" parsePeople -- -- will produce: -- -- > [Person {age = 25, name = "Michael"},Person {age = 2, name = "Eliezer"}] module Text.XML.Enumerator.Parse ( -- * Parsing XML files parseBytes , parseText , detectUtf , parseFile , parseFile_ , parseLBS , parseLBS_ -- ** Entity decoding , DecodeEntities , decodeEntities -- * Event parsing , tag , tagName , tagNoAttr , content , contentMaybe , ignoreElem , ignoreSiblings -- * Attribute parsing , AttrParser , requireAttr , optionalAttr , requireAttrRaw , optionalAttrRaw , ignoreAttrs , skipAttrs -- * Combinators , choose , many , force , skipTill , skipSiblings -- * Exceptions , XmlException (..) ) where import Data.Attoparsec.Text ( char, Parser, takeWhile1, skipWhile, string , manyTill, takeWhile, try, anyChar, endOfInput ) import qualified Data.Attoparsec.Text as A import Data.Attoparsec.Text.Enumerator (iterParser) import Data.XML.Types ( Name (..), Event (..), Content (..) , Instruction (..), ExternalID (..) ) import Control.Applicative ((<|>), (<$>)) import Data.Text (Text) import qualified Data.Text as T import Text.XML.Enumerator.Token import Prelude hiding (takeWhile) import qualified Data.ByteString as S import qualified Data.ByteString.Lazy as L import qualified Data.Map as Map import Data.Enumerator ( Iteratee, Enumeratee, (>>==), Stream (..), run_, Enumerator, Step (..) , checkDone, yield, ($$), joinI, run, throwError, returnI ) import qualified Data.Enumerator as E import qualified Data.Enumerator.List as EL import qualified Data.Enumerator.Text as ET import qualified Data.Enumerator.Binary as EB import Control.Monad (unless, ap, liftM) import qualified Data.Text as TS import Data.List (foldl') import Control.Applicative (Applicative (..)) import Data.Typeable (Typeable) import Control.Exception (Exception, throwIO, SomeException) import Data.Enumerator.Binary (enumFile) import Control.Monad.IO.Class (liftIO) import Data.Char (isSpace) tokenToEvent :: [NSLevel] -> Token -> ([NSLevel], [Event]) tokenToEvent n (TokenBeginDocument _) = (n, []) tokenToEvent n (TokenInstruction i) = (n, [EventInstruction i]) tokenToEvent n (TokenBeginElement name as isClosed) = (n', if isClosed then [begin, end] else [begin]) where l0 = case n of [] -> NSLevel Nothing Map.empty x:_ -> x (as', l') = foldl' go (id, l0) as go (front, l) a@(TName kpref kname, val) | kpref == Just "xmlns" = (front, l { prefixes = Map.insert kname (contentsToText val) $ prefixes l }) | kpref == Nothing && kname == "xmlns" = (front, l { defaultNS = if T.null $ contentsToText val then Nothing else Just $ contentsToText val }) | otherwise = (front . (:) a, l) n' = if isClosed then n else l' : n fixAttName level (name', val) = (tnameToName True level name', val) begin = EventBeginElement (tnameToName False l' name) $ Map.fromList $ map (fixAttName l') $ as' [] end = EventEndElement $ tnameToName False l' name tokenToEvent n (TokenEndElement name) = (n', [EventEndElement $ tnameToName False l name]) where (l, n') = case n of [] -> (NSLevel Nothing Map.empty, []) x:xs -> (x, xs) tokenToEvent n (TokenContent c) = (n, [EventContent c]) tokenToEvent n (TokenComment c) = (n, [EventComment c]) tokenToEvent n (TokenDoctype t eid) = (n, [EventBeginDoctype t eid, EventEndDoctype]) tokenToEvent n (TokenCDATA t) = (n, [EventCDATA t]) tnameToName :: Bool -> NSLevel -> TName -> Name tnameToName _ _ (TName (Just "xml") name) = Name name (Just "http://www.w3.org/XML/1998/namespace") (Just "xml") tnameToName isAttr (NSLevel def _) (TName Nothing name) = Name name (if isAttr then Nothing else def) Nothing tnameToName _ (NSLevel _ m) (TName (Just pref) name) = case Map.lookup pref m of Just ns -> Name name (Just ns) (Just pref) Nothing -> Name name Nothing (Just pref) -- FIXME is this correct? -- | Automatically determine which UTF variant is being used. This function -- first checks for BOMs, removing them as necessary, and then check for the -- equivalent of Enumeratee S.ByteString TS.Text m a detectUtf step = do x <- EB.take 4 let (toDrop, codec) = case L.unpack x of [0x00, 0x00, 0xFE, 0xFF] -> (4, ET.utf32_be) [0xFF, 0xFE, 0x00, 0x00] -> (4, ET.utf32_le) 0xFE : 0xFF: _ -> (2, ET.utf16_be) 0xFF : 0xFE: _ -> (2, ET.utf16_le) 0xEF : 0xBB: 0xBF : _ -> (3, ET.utf8) [0x00, 0x00, 0x00, 0x3C] -> (0, ET.utf32_be) [0x3C, 0x00, 0x00, 0x00] -> (0, ET.utf32_le) [0x00, 0x3C, 0x00, 0x3F] -> (0, ET.utf16_be) [0x3C, 0x00, 0x3F, 0x00] -> (0, ET.utf16_le) _ -> (0, ET.utf8) -- Assuming UTF-8 unless (toDrop == 4) $ yield () $ Chunks $ L.toChunks $ L.drop toDrop x ET.decode codec step -- | Parses a byte stream into 'Event's. This function is implemented fully in -- Haskell using attoparsec-text for parsing. The produced error messages do -- not give line/column information, so you may prefer to stick with the parser -- provided by libxml-enumerator. However, this has the advantage of not -- relying on any C libraries. -- -- This relies on 'detectUtf' to determine character encoding, and 'parseText' -- to do the actual parsing. parseBytes :: Monad m => DecodeEntities -> Enumeratee S.ByteString Event m a parseBytes de step = joinI $ detectUtf $$ parseText de step -- | Parses a character stream into 'Event's. This function is implemented -- fully in Haskell using attoparsec-text for parsing. The produced error -- messages do not give line/column information, so you may prefer to stick -- with the parser provided by libxml-enumerator. However, this has the -- advantage of not relying on any C libraries. parseText :: Monad m => DecodeEntities -> Enumeratee TS.Text Event m a parseText de = checkDone $ \k -> k (Chunks [EventBeginDocument]) >>== loop [] where loop levels = checkDone $ go levels go levels k = do mtoken <- iterToken de case mtoken of Nothing -> k (Chunks [EventEndDocument]) >>== return Just token -> let (levels', events) = tokenToEvent levels token in k (Chunks events) >>== loop levels' iterToken :: Monad m => DecodeEntities -> Iteratee TS.Text m (Maybe Token) iterToken de = iterParser ((endOfInput >> return Nothing) <|> fmap Just (parseToken de)) parseToken :: DecodeEntities -> Parser Token parseToken de = do (char '<' >> parseLt) <|> fmap TokenContent (parseContent de False False) where parseLt = (char '?' >> parseInstr) <|> (char '!' >> (parseComment <|> parseCdata <|> parseDoctype)) <|> (char '/' >> parseEnd) <|> parseBegin parseInstr = do name <- parseIdent if name == "xml" then do as <- A.many $ parseAttribute de skipSpace char' '?' char' '>' newline <|> return () return $ TokenBeginDocument as else do skipSpace x <- T.pack <$> manyTill anyChar (try $ string "?>") return $ TokenInstruction $ Instruction name x parseComment = do char' '-' char' '-' c <- T.pack <$> manyTill anyChar (string "-->") -- FIXME use takeWhile instead return $ TokenComment c parseCdata = do _ <- string "[CDATA[" t <- T.pack <$> manyTill anyChar (string "]]>") -- FIXME use takeWhile instead return $ TokenCDATA t parseDoctype = do _ <- string "DOCTYPE" skipSpace i <- parseIdent skipSpace eid <- fmap Just parsePublicID <|> fmap Just parseSystemID <|> return Nothing skipSpace (do char' '[' skipWhile (/= ']') char' ']' skipSpace) <|> return () char' '>' newline <|> return () return $ TokenDoctype i eid parsePublicID = do _ <- string "PUBLIC" x <- quotedText y <- quotedText return $ PublicID x y parseSystemID = do _ <- string "SYSTEM" x <- quotedText return $ SystemID x quotedText = do skipSpace between '"' <|> between '\'' between c = do char' c x <- takeWhile (/=c) char' c return x parseEnd = do skipSpace n <- parseName skipSpace char' '>' return $ TokenEndElement n parseBegin = do skipSpace n <- parseName as <- A.many $ parseAttribute de skipSpace isClose <- (char '/' >> skipSpace >> return True) <|> return False char' '>' return $ TokenBeginElement n as isClose parseAttribute :: DecodeEntities -> Parser TAttribute parseAttribute de = do skipSpace key <- parseName skipSpace char' '=' skipSpace val <- squoted <|> dquoted return (key, val) where squoted = do char' '\'' manyTill (parseContent de False True) (char '\'') dquoted = do char' '"' manyTill (parseContent de True False) (char '"') parseName :: Parser TName parseName = do i1 <- parseIdent mi2 <- (char ':' >> fmap Just parseIdent) <|> return Nothing return $ case mi2 of Nothing -> TName Nothing i1 Just i2 -> TName (Just i1) i2 parseIdent :: Parser Text parseIdent = takeWhile1 valid where valid '&' = False valid '<' = False valid '>' = False valid ':' = False valid '?' = False valid '=' = False valid '"' = False valid '\'' = False valid '/' = False valid c = not $ isSpace c parseContent :: DecodeEntities -> Bool -- break on double quote -> Bool -- break on single quote -> Parser Content parseContent de breakDouble breakSingle = parseEntity <|> parseText' where parseEntity = do char' '&' t <- takeWhile1 (/= ';') char' ';' return $ de t parseText' = do bs <- takeWhile1 valid return $ ContentText bs valid '"' = not breakDouble valid '\'' = not breakSingle valid '&' = False -- amp valid '<' = False -- lt valid _ = True skipSpace :: Parser () skipSpace = skipWhile isSpace newline :: Parser () newline = ((char '\r' >> char '\n') <|> char '\n') >> return () char' :: Char -> Parser () char' c = char c >> return () data ContentType = Ignore | IsContent Text | IsError String | NotContent -- | Grabs the next piece of content if available. contentMaybe :: Monad m => Iteratee Event m (Maybe Text) contentMaybe = do x <- E.peek case pc' x of Ignore -> EL.drop 1 >> contentMaybe IsContent t -> EL.drop 1 >> fmap Just (takeContents (t:)) IsError e -> throwError $ XmlException e x NotContent -> return Nothing where pc' Nothing = NotContent pc' (Just x) = pc x pc (EventContent (ContentText t)) = IsContent t pc (EventContent (ContentEntity e)) = IsError $ "Unknown entity: " ++ show e pc (EventCDATA t) = IsContent t pc EventBeginElement{} = NotContent pc EventEndElement{} = NotContent pc EventBeginDocument{} = Ignore pc EventEndDocument = Ignore pc EventBeginDoctype{} = Ignore pc EventDeclaration{} = Ignore pc EventEndDoctype = Ignore pc EventInstruction{} = Ignore pc EventComment{} = Ignore takeContents front = do x <- E.peek case pc' x of Ignore -> EL.drop 1 >> takeContents front IsContent t -> EL.drop 1 >> takeContents (front . (:) t) IsError e -> throwError $ XmlException e x NotContent -> return $ T.concat $ front [] -- | Grabs the next piece of content. If none if available, returns 'T.empty'. content :: Monad m => Iteratee Event m Text content = do x <- contentMaybe case x of Nothing -> return T.empty Just y -> return y -- | The most generic way to parse a tag. It takes a predicate for checking if -- this is the correct tag name, an 'AttrParser' for handling attributes, and -- then a parser for dealing with content. -- -- This function automatically absorbs its balancing closing tag, and will -- throw an exception if not all of the attributes or child elements are -- consumed. If you want to allow extra attributes, see 'ignoreAttrs'. tag :: Monad m => (Name -> Maybe a) -> (a -> AttrParser b) -> (b -> Iteratee Event m c) -> Iteratee Event m (Maybe c) tag checkName attrParser f = do x <- dropWS case x of Just (EventBeginElement name as) -> case checkName name of Just y -> case runAttrParser' (attrParser y) $ Map.toList as of Left e -> throwError e Right z -> do EL.drop 1 z' <- f z a <- dropWS case a of Just (EventEndElement name') | name == name' -> EL.drop 1 >> return (Just z') _ -> throwError $ XmlException ("Expected end tag for: " ++ show name) a Nothing -> return Nothing _ -> return Nothing where dropWS = do x <- E.peek let isWS = case x of Just EventBeginDocument -> True Just EventEndDocument -> True Just EventBeginDoctype{} -> True Just EventDeclaration{} -> True Just EventEndDoctype -> True Just EventInstruction{} -> True Just EventBeginElement{} -> False Just EventEndElement{} -> False Just (EventContent (ContentText t)) | T.all isSpace t -> True | otherwise -> False Just (EventContent ContentEntity{}) -> False Just EventComment{} -> True Just EventCDATA{} -> False Nothing -> False if isWS then EL.drop 1 >> dropWS else return x runAttrParser' p as = case runAttrParser p as of Left e -> Left e Right ([], x) -> Right x Right (attr, _) -> Left $ UnparsedAttributes attr -- | A simplified version of 'tag' which matches for specific tag names instead -- of taking a predicate function. This is often sufficient, and when combined -- with OverloadedStrings and the IsString instance of 'Name', can prove to be -- very concise. tagName :: Monad m => Name -> AttrParser a -> (a -> Iteratee Event m b) -> Iteratee Event m (Maybe b) tagName name attrParser = tag (\x -> if x == name then Just () else Nothing) (const attrParser) -- | A further simplified tag parser, which requires that no attributes exist. tagNoAttr :: Monad m => Name -> Iteratee Event m a -> Iteratee Event m (Maybe a) tagNoAttr name f = tagName name (return ()) $ const f -- | Get the value of the first parser which returns 'Just'. If none return -- 'Just', returns 'Nothing'. choose :: Monad m => [Iteratee Event m (Maybe a)] -> Iteratee Event m (Maybe a) choose [] = return Nothing choose (i:is) = do x <- i case x of Nothing -> choose is Just a -> return $ Just a -- | Force an optional parser into a required parser. All of the 'tag' -- functions, 'choose' and 'many' deal with 'Maybe' parsers. Use this when you -- want to finally force something to happen. force :: Monad m => String -- ^ Error message -> Iteratee Event m (Maybe a) -> Iteratee Event m a force msg i = do x <- i case x of Nothing -> throwError $ XmlException msg Nothing Just a -> return a -- | The same as 'parseFile', but throws any exceptions. parseFile_ :: FilePath -> DecodeEntities -> Iteratee Event IO a -> IO a parseFile_ fn de p = parseFile fn de p >>= go where go (Left e) = liftIO $ throwIO e go (Right a) = return a -- | A helper function which reads a file from disk using 'enumFile', detects -- character encoding using 'detectUtf', parses the XML using 'parseBytes', -- converts to an 'SEvent' stream using 'simplify' and then handing off control -- to your supplied parser. parseFile :: FilePath -> DecodeEntities -> Iteratee Event IO a -> IO (Either SomeException a) parseFile fn de p = run $ enumFile fn $$ joinI $ parseBytes de $$ p parseLBS :: L.ByteString -> DecodeEntities -> Iteratee Event IO a -> IO (Either SomeException a) parseLBS lbs de p = run $ enumSingle (L.toChunks lbs) $$ joinI $ parseBytes de $$ p parseLBS_ :: L.ByteString -> DecodeEntities -> Iteratee Event IO a -> IO a parseLBS_ lbs de p = run_ $ enumSingle (L.toChunks lbs) $$ joinI $ parseBytes de $$ p enumSingle :: Monad m => [a] -> Enumerator a m b enumSingle as (Continue k) = k $ Chunks as enumSingle _ step = returnI step data XmlException = XmlException { xmlErrorMessage :: String , xmlBadInput :: Maybe Event } | InvalidEndElement Name | InvalidEntity Text | UnparsedAttributes [(Name, [Content])] deriving (Show, Typeable) instance Exception XmlException -- | A monad for parsing attributes. By default, it requires you to deal with -- all attributes present on an element, and will throw an exception if there -- are unhandled attributes. Use the 'requireAttr', 'optionalAttr' et al -- functions for handling an attribute, and 'ignoreAttrs' if you would like to -- skip the rest of the attributes on an element. newtype AttrParser a = AttrParser { runAttrParser :: [(Name, [Content])] -> Either XmlException ([(Name, [Content])], a) } instance Monad AttrParser where return a = AttrParser $ \as -> Right (as, a) (AttrParser f) >>= g = AttrParser $ \as -> case f as of Left e -> Left e Right (as', f') -> runAttrParser (g f') as' instance Functor AttrParser where fmap = liftM instance Applicative AttrParser where pure = return (<*>) = ap optionalAttrRaw :: ((Name, [Content]) -> Maybe b) -> AttrParser (Maybe b) optionalAttrRaw f = AttrParser $ go id where go front [] = Right (front [], Nothing) go front (a:as) = case f a of Nothing -> go (front . (:) a) as Just b -> Right (front as, Just b) requireAttrRaw :: String -> ((Name, [Content]) -> Maybe b) -> AttrParser b requireAttrRaw msg f = do x <- optionalAttrRaw f case x of Just b -> return b Nothing -> AttrParser $ const $ Left $ XmlException msg Nothing -- | Require that a certain attribute be present and return its value. requireAttr :: Name -> AttrParser Text requireAttr n = requireAttrRaw ("Missing attribute: " ++ show n) (\(x, y) -> if x == n then Just (contentsToText y) else Nothing) -- | Return the value for an attribute if present. optionalAttr :: Name -> AttrParser (Maybe Text) optionalAttr n = optionalAttrRaw (\(x, y) -> if x == n then Just (contentsToText y) else Nothing) contentsToText :: [Content] -> Text contentsToText = T.concat . map toText where toText (ContentText t) = t toText (ContentEntity e) = T.concat ["&", e, ";"] -- | Skip the remaining attributes on an element. Since this will clear the -- list of attributes, you must call this /after/ any calls to 'requireAttr', -- 'optionalAttr', etc. ignoreAttrs :: AttrParser () ignoreAttrs = AttrParser $ \_ -> Right ([], ()) -- | Keep parsing elements as long as the parser returns 'Just'. many :: Monad m => Iteratee Event m (Maybe a) -> Iteratee Event m [a] many i = go id where go front = do x <- i case x of Nothing -> return $ front [] Just y -> go $ front . (:) y {- -- There is some possible realisations using higher interface -- ignoreSiblings' is about 30 percent slowly than ignoreSiblings -- if ignoreSiblings' uses ignoreElem (instead of ignoreElem') it is about 5 percent slowly than ignoreSiblings -- | Ignore content if exists ignoreContent :: Monad m => Iteratee SEvent m (Maybe ()) ignoreContent = fmap (fmap $ const ()) content -- | Iteratee to skip the next element. ignoreElem' :: Monad m => Iteratee Event m (Maybe ()) ignoreElem' = tag (const $ Just ()) (const ignoreAttrs) (const $ ignoreSiblings' >> return ()) -- | Iteratee to skip the siblings element. ignoreSiblings' :: Monad m => Iteratee Event m [()] ignoreSiblings' = many (choose [ignoreElem', ignoreContent]) -} -- | Iteratee to skip the siblings element. ignoreSiblings :: Monad m => Iteratee Event m () ignoreSiblings = E.continue (loop 0) where loop :: Monad m => Int -> Stream Event -> Iteratee Event m () loop n (Chunks []) = E.continue (loop n) loop n chs@(Chunks (x:_)) = case x of (EventBeginElement _ _) -> E.continue (loop (n+1)) (EventEndElement _) | n == 0 -> yield () chs | otherwise -> E.continue (loop (n-1)) _ -> E.continue (loop n) loop _ EOF = throwError $ XmlException "Unbalanced xml-tree. (Error in skipSiblings)" Nothing -- | Iteratee to skip the next element. ignoreElem :: Monad m => Iteratee Event m (Maybe ()) ignoreElem = E.continue (loop 0) where loop :: Monad m => Int -> Stream Event -> Iteratee Event m (Maybe ()) loop n (Chunks []) = E.continue (loop n) loop n chs@(Chunks (x:xs)) = case x of (EventBeginElement _ _) -> E.continue (loop (n+1)) (EventEndElement _) | n == 0 -> yield Nothing chs | n == 1 -> yield (Just ()) (Chunks xs) | otherwise -> E.continue (loop (n-1)) _ -> E.continue (loop n) loop _ EOF = throwError $ XmlException "Unbalanced xml-tree. (Error in skipSiblings)" Nothing -- | Skip the siblings elements until iteratee not right. skipTill :: Monad m => Iteratee Event m (Maybe a) -> Iteratee Event m (Maybe a) skipTill i = go where go = i >>= \x -> case x of Nothing -> ignoreElem >>= (\y -> if y == Nothing then return Nothing else go) r -> return r -- | Combinator to skip the siblings element. skipSiblings :: Monad m => Iteratee Event m a -> Iteratee Event m a skipSiblings i = i >>= \r -> ignoreSiblings >> return r -- | Combinator to skip the attributes. skipAttrs :: AttrParser a -> AttrParser a skipAttrs i = i >>= \r -> ignoreAttrs >> return r type DecodeEntities = Text -> Content -- | Default implementation of 'DecodeEntities': handles numeric entities and -- the five standard character entities (lt, gt, amp, quot, apos). decodeEntities :: DecodeEntities decodeEntities "lt" = ContentText "<" decodeEntities "gt" = ContentText ">" decodeEntities "amp" = ContentText "&" decodeEntities "quot" = ContentText "\"" decodeEntities "apos" = ContentText "'" decodeEntities t = case T.uncons t of Just ('#', t') -> case T.uncons t' of Just ('x', t'') -> decodeHex (ContentEntity t) t'' _ -> decodeDec (ContentEntity t) t' _ -> ContentEntity t decodeHex :: Content -> Text -> Content decodeHex backup val | T.null val = backup decodeHex backup val = go (T.unpack val) 0 where go [] i = ContentText $ T.singleton $ toEnum i go (c:cs) i = maybe backup (go cs . ((i * 16) +)) $ getHex c getHex c | '0' <= c && c <= '9' = Just $ fromEnum c - fromEnum '0' | 'A' <= c && c <= 'F' = Just $ fromEnum c - fromEnum 'A' + 10 | 'a' <= c && c <= 'f' = Just $ fromEnum c - fromEnum 'a' + 10 | otherwise = Nothing decodeDec :: Content -> Text -> Content decodeDec backup val | T.null val = backup decodeDec backup val = go (T.unpack val) 0 where go [] i = ContentText $ T.singleton $ toEnum i go (c:cs) i = maybe backup (go cs . ((i * 10) +)) $ getHex c getHex c | '0' <= c && c <= '9' = Just $ fromEnum c - fromEnum '0' | otherwise = Nothing