----------------------------------------------------------------------------- -- | -- Copyright : (c) 2006-2007 Duncan Coutts -- License : BSD-style -- -- Maintainer : duncan.coutts@worc.ox.ac.uk -- Stability : provisional -- Portability : portable (H98 + FFI) -- -- Pure stream based interface to lower level zlib wrapper -- ----------------------------------------------------------------------------- module Codec.Compression.Zlib.Internal ( -- * Compression and decompression compressDefault, decompressDefault, Stream.Format(..), Stream.CompressionLevel(..), -- * The same but with the full set of parameters compressFull, decompressFull, Stream.Method(..), Stream.WindowBits(..), Stream.MemoryLevel(..), Stream.CompressionStrategy(..), ) where import Prelude hiding (length) import Control.Monad (when) import Control.Exception (assert) import qualified Data.ByteString.Lazy as L #ifdef BYTESTRING_IN_BASE import qualified Data.ByteString.Base as S #else import qualified Data.ByteString.Lazy.Internal as L import qualified Data.ByteString.Internal as S #endif import qualified Codec.Compression.Zlib.Stream as Stream import Codec.Compression.Zlib.Stream (Stream) compressDefault :: Stream.Format -> Stream.CompressionLevel -> L.ByteString -> L.ByteString compressDefault format compressionLevel = compressFull format compressionLevel Stream.Deflated Stream.DefaultWindowBits Stream.DefaultMemoryLevel Stream.DefaultStrategy decompressDefault :: Stream.Format -> L.ByteString -> L.ByteString decompressDefault format = decompressFull format Stream.DefaultWindowBits {-# NOINLINE compressFull #-} compressFull :: Stream.Format -> Stream.CompressionLevel -> Stream.Method -> Stream.WindowBits -> Stream.MemoryLevel -> Stream.CompressionStrategy -> L.ByteString -> L.ByteString compressFull format compLevel method bits memLevel strategy input = L.fromChunks $ Stream.run $ do Stream.deflateInit format compLevel method bits memLevel strategy case L.toChunks input of [] -> fillBuffers [] S.PS inFPtr offset length : chunks -> do Stream.pushInputBuffer inFPtr offset length fillBuffers chunks where outChunkSize :: Int #ifdef BYTESTRING_IN_BASE outChunkSize = 16 * 1024 - 16 #else outChunkSize = 16 * 1024 - L.chunkOverhead #endif -- we flick between two states: -- * where one or other buffer is empty -- - in which case we refill one or both -- * where both buffers are non-empty -- - in which case we compress until a buffer is empty fillBuffers :: [S.ByteString] -> Stream [S.ByteString] fillBuffers inChunks = do Stream.consistencyCheck -- in this state there are two possabilities: -- * no outbut buffer space is available -- - in which case we must make more available -- * no input buffer is available -- - in which case we must supply more inputBufferEmpty <- Stream.inputBufferEmpty outputBufferFull <- Stream.outputBufferFull assert (inputBufferEmpty || outputBufferFull) $ return () when outputBufferFull $ do outFPtr <- Stream.unsafeLiftIO (S.mallocByteString outChunkSize) Stream.pushOutputBuffer outFPtr 0 outChunkSize if inputBufferEmpty then case inChunks of [] -> drainBuffers [] S.PS inFPtr offset length : inChunks' -> do Stream.pushInputBuffer inFPtr offset length drainBuffers inChunks' else drainBuffers inChunks drainBuffers :: [S.ByteString] -> Stream [S.ByteString] drainBuffers inChunks = do inputBufferEmpty' <- Stream.inputBufferEmpty outputBufferFull' <- Stream.outputBufferFull assert(not outputBufferFull' && (null inChunks || not inputBufferEmpty')) $ return () -- this invariant guarantees we can always make forward progress -- and that therefore a BufferError is impossible let flush = if null inChunks then Stream.Finish else Stream.NoFlush status <- Stream.deflate flush case status of Stream.Ok -> do outputBufferFull <- Stream.outputBufferFull if outputBufferFull then do (outFPtr, offset, length) <- Stream.popOutputBuffer outChunks <- Stream.unsafeInterleave (fillBuffers inChunks) return (S.PS outFPtr offset length : outChunks) else do fillBuffers inChunks Stream.StreamEnd -> do inputBufferEmpty <- Stream.inputBufferEmpty assert inputBufferEmpty $ return () outputBufferBytesAvailable <- Stream.outputBufferBytesAvailable if outputBufferBytesAvailable > 0 then do (outFPtr, offset, length) <- Stream.popOutputBuffer Stream.finalise return [S.PS outFPtr offset length] else do Stream.finalise return [] Stream.BufferError -> fail "BufferError should be impossible!" Stream.NeedDict -> fail "NeedDict is impossible!" {-# NOINLINE decompressFull #-} decompressFull :: Stream.Format -> Stream.WindowBits -> L.ByteString -> L.ByteString decompressFull format bits input = L.fromChunks $ Stream.run $ do Stream.inflateInit format bits case L.toChunks input of [] -> fillBuffers [] S.PS inFPtr offset length : chunks -> do Stream.pushInputBuffer inFPtr offset length fillBuffers chunks where outChunkSize :: Int #ifdef BYTESTRING_IN_BASE outChunkSize = 32 * 1024 - 16 #else outChunkSize = 32 * 1024 - L.chunkOverhead #endif -- we flick between two states: -- * where one or other buffer is empty -- - in which case we refill one or both -- * where both buffers are non-empty -- - in which case we compress until a buffer is empty fillBuffers :: [S.ByteString] -> Stream [S.ByteString] fillBuffers inChunks = do -- in this state there are two possabilities: -- * no outbut buffer space is available -- - in which case we must make more available -- * no input buffer is available -- - in which case we must supply more inputBufferEmpty <- Stream.inputBufferEmpty outputBufferFull <- Stream.outputBufferFull assert (inputBufferEmpty || outputBufferFull) $ return () when outputBufferFull $ do outFPtr <- Stream.unsafeLiftIO (S.mallocByteString outChunkSize) Stream.pushOutputBuffer outFPtr 0 outChunkSize if inputBufferEmpty then case inChunks of [] -> drainBuffers [] S.PS inFPtr offset length : inChunks' -> do Stream.pushInputBuffer inFPtr offset length drainBuffers inChunks' else drainBuffers inChunks drainBuffers :: [S.ByteString] -> Stream [S.ByteString] drainBuffers inChunks = do inputBufferEmpty' <- Stream.inputBufferEmpty outputBufferFull' <- Stream.outputBufferFull assert(not outputBufferFull' && (null inChunks || not inputBufferEmpty')) $ return () -- this invariant guarantees we can always make forward progress or at -- least if a BufferError does occur that it must be due to a premature EOF status <- Stream.inflate Stream.NoFlush case status of Stream.Ok -> do outputBufferFull <- Stream.outputBufferFull if outputBufferFull then do (outFPtr, offset, length) <- Stream.popOutputBuffer outChunks <- Stream.unsafeInterleave (fillBuffers inChunks) return (S.PS outFPtr offset length : outChunks) else do fillBuffers inChunks Stream.StreamEnd -> do -- Note that there may be input bytes still available if the stream -- is embeded in some other data stream. Here we just silently discard -- any trailing data. outputBufferBytesAvailable <- Stream.outputBufferBytesAvailable if outputBufferBytesAvailable > 0 then do (outFPtr, offset, length) <- Stream.popOutputBuffer Stream.finalise return [S.PS outFPtr offset length] else do Stream.finalise return [] Stream.BufferError -> fail "premature end of compressed stream" Stream.NeedDict -> fail "compressed stream needs a custom dictionary"