Algebra.NormedSpace.Euclidean
 Portability requires multi-parameter type classes Stability provisional Maintainer numericprelude@henning-thielemann.de
 Contents Instances for atomic types Instances for composed types
Description
Abstraction of normed vector spaces
Synopsis
class (C a, C a v) => Sqr a v where
 normSqr :: v -> a
class Sqr a v => C a v where
 norm :: v -> a
defltNorm :: (C a, Sqr a v) => v -> a
Documentation
 class (C a, C a v) => Sqr a v where Source

A vector space equipped with an Euclidean or a Hilbert norm.

Minimal definition: normSqr

Methods
 normSqr :: v -> a Source
Square of the Euclidean norm of a vector. This is sometimes easier to implement.
Instances
 Sqr Double Double Sqr Float Float Sqr Int Int Sqr Integer Integer Sqr a v => Sqr a [v] Sqr a b => Sqr a (T b) Sqr a b => Sqr a (T b) (Sqr a v0, Sqr a v1) => Sqr a (v0, v1) (Ord i, Eq a, Eq v, Sqr a v) => Sqr a (Map i v) (Sqr a v0, Sqr a v1, Sqr a v2) => Sqr a (v0, v1, v2) (C a, C a) => Sqr (T a) (T a)
 class Sqr a v => C a v where Source
Methods
 norm :: v -> a Source
Euclidean norm of a vector.
Instances
 C Double Double C Float Float C Int Int C Integer Integer (C a, Sqr a v) => C a [v] (C a, Sqr a b) => C a (T b) (C a, Sqr a b) => C a (T b) (C a, Sqr a v0, Sqr a v1) => C a (v0, v1) (Ord i, Eq a, Eq v, C a, Sqr a v) => C a (Map i v) (C a, Sqr a v0, Sqr a v1, Sqr a v2) => C a (v0, v1, v2)
 defltNorm :: (C a, Sqr a v) => v -> a Source
Instances for atomic types
Instances for composed types
Produced by Haddock version 2.6.0