{-# LANGUAGE CPP #-} module Agda.TypeChecking.Rules.Def where import Prelude hiding (mapM) import Control.Applicative import Control.Monad.State hiding (mapM) import Control.Monad.Reader hiding (mapM) import Control.Monad hiding (mapM) import Data.List hiding (sort) import Data.Traversable import Data.Set (Set) import qualified Data.Set as Set import qualified System.IO.UTF8 as UTF8 import Agda.Syntax.Common import Agda.Syntax.Position import qualified Agda.Syntax.Abstract as A import Agda.Syntax.Internal import qualified Agda.Syntax.Info as Info import qualified Agda.Syntax.Abstract.Pretty as A import Agda.Syntax.Fixity import Agda.Syntax.Translation.InternalToAbstract import Agda.TypeChecking.Monad import Agda.TypeChecking.Reduce import Agda.TypeChecking.Pretty import Agda.TypeChecking.Substitute import Agda.TypeChecking.Free import Agda.TypeChecking.Constraints import Agda.TypeChecking.Conversion import Agda.TypeChecking.Empty import Agda.TypeChecking.MetaVars import Agda.TypeChecking.Rebind import Agda.TypeChecking.Primitive hiding (Nat) import Agda.TypeChecking.With import Agda.TypeChecking.Telescope import Agda.TypeChecking.Coverage import Agda.TypeChecking.Injectivity import Agda.TypeChecking.Polarity import Agda.TypeChecking.SizedTypes import Agda.TypeChecking.Rules.Term ( checkExpr, inferExpr, checkTelescope, isType_ ) import Agda.TypeChecking.Rules.LHS ( checkLeftHandSide ) import {-# SOURCE #-} Agda.TypeChecking.Rules.Decl ( checkDecls ) import Agda.TypeChecking.Rules.Data ( isCoinductive ) import Agda.Interaction.Options import Agda.Utils.Tuple import Agda.Utils.Size import Agda.Utils.Function import Agda.Utils.List import Agda.Utils.Permutation import Agda.Utils.Monad #include "../../undefined.h" import Agda.Utils.Impossible --------------------------------------------------------------------------- -- * Definitions by pattern matching --------------------------------------------------------------------------- -- | Type check a definition by pattern matching. The first argument -- specifies whether the clauses are delayed or not. checkFunDef :: Delayed -> Info.DefInfo -> QName -> [A.Clause] -> TCM () checkFunDef delayed i name cs = traceCall (CheckFunDef (getRange i) (qnameName name) cs) $ do -- TODO!! (qnameName) -- Get the type of the function t <- typeOfConst name reportSDoc "tc.def.fun" 10 $ sep [ text "checking body of" <+> prettyTCM name , nest 2 $ text ":" <+> prettyTCM t , nest 2 $ text "full type:" <+> (prettyTCM . defType =<< getConstInfo name) ] -- Check the clauses let check c = do c <- checkClause t c solveSizeConstraints return c cs <- mapM check cs -- Check that all clauses have the same number of arguments unless (allEqual $ map npats cs) $ typeError DifferentArities -- Annotate the clauses with which arguments are actually used. cs <- mapM rebindClause cs -- Check if the function is injective inv <- checkInjectivity name cs -- Add the definition addConstant name $ Defn name t (defaultDisplayForm name) 0 $ Function { funClauses = cs , funDelayed = delayed , funInv = inv , funAbstr = Info.defAbstract i , funPolarity = [] , funArgOccurrences = [] } computePolarity name verboseS "tc.def.fun" 10 $ do dx <- prettyTCM name t' <- prettyTCM . defType =<< getConstInfo name liftIO $ UTF8.putStrLn $ "added " ++ show dx ++ " : " ++ show t' -- Check pattern coverage checkCoverage name where npats = size . clausePats data WithFunctionProblem = NoWithFunction | WithFunction QName -- parent function name QName -- with function name Telescope -- arguments to parent function Telescope -- arguments to the with function before the with expressions Telescope -- arguments to the with function after the with expressions [Term] -- with expressions [Type] -- types of the with expressions Type -- type of the right hand side [Arg Pattern] -- parent patterns Permutation -- permutation reordering the variables in the parent pattern [A.Clause] -- the given clauses for the with function -- | Type check a function clause. checkClause :: Type -> A.Clause -> TCM Clause checkClause t c@(A.Clause (A.LHS i x aps []) rhs wh) = traceCall (CheckClause t c) $ checkLeftHandSide c aps t $ \gamma delta sub xs ps t' perm -> do let mkBody v = foldr (\x t -> Bind $ Abs x t) (Body $ substs sub v) xs (body, with) <- checkWhere (size delta) wh $ case rhs of A.RHS e | any (containsAbsurdPattern . namedThing . unArg) aps -> typeError $ AbsurdPatternRequiresNoRHS aps | otherwise -> do v <- checkExpr e t' return (mkBody v, NoWithFunction) A.AbsurdRHS | any (containsAbsurdPattern . namedThing . unArg) aps -> return (NoBody, NoWithFunction) | otherwise -> typeError $ NoRHSRequiresAbsurdPattern aps A.WithRHS aux es cs -> do -- Infer the types of the with expressions vas <- mapM inferExpr es (vs, as) <- instantiateFull $ unzip vas -- Invent a clever name for the with function m <- currentModule reportSDoc "tc.with.top" 20 $ text "with function module:" <+> prettyList (map prettyTCM $ mnameToList m) -- Split the telescope into the part needed to type the with arguments -- and all the other stuff let fv = allVars $ freeVars vs SplitTel delta1 delta2 perm' = splitTelescope fv delta finalPerm = composeP perm' perm reportSDoc "tc.with.top" 25 $ vcat [ text "delta =" <+> prettyTCM delta , text "delta1 =" <+> prettyTCM delta1 , text "delta2 =" <+> addCtxTel delta1 (prettyTCM delta2) ] -- Create the body of the original function ctx <- getContextTelescope let n = size ctx m = size delta us = [ Arg h (Var i []) | (i, Arg h _) <- zip [n - 1,n - 2..0] $ telToList ctx ] (us0, us1') = genericSplitAt (n - m) us (us1, us2) = genericSplitAt (size delta1) $ permute perm' us1' v = Def aux $ us0 ++ us1 ++ (map (Arg NotHidden) vs) ++ us2 -- We need Δ₁Δ₂ ⊢ t' t' <- return $ rename (reverseP perm') t' -- and Δ₁ ⊢ vs : as (vs, as) <- do let var = flip Var [] -- We know that as does not depend on Δ₂ rho = replicate (size delta2) __IMPOSSIBLE__ ++ map var [0..] return $ substs rho $ rename (reverseP perm') (vs, as) reportSDoc "tc.with.top" 20 $ vcat [ text " with arguments" <+> prettyList (map prettyTCM vs) , text " types" <+> prettyList (map prettyTCM as) , text "with function call" <+> prettyTCM v , text " context" <+> (prettyTCM =<< getContextTelescope) , text " delta" <+> prettyTCM delta , text " fv" <+> text (show fv) ] return (mkBody v, WithFunction x aux gamma delta1 delta2 vs as t' ps finalPerm cs) escapeContext (size delta) $ checkWithFunction with reportSDoc "tc.lhs.top" 10 $ vcat [ text "Final clause:" , nest 2 $ vcat [ text "delta =" <+> prettyTCM delta , text "perm =" <+> text (show perm) , text "ps =" <+> text (show ps) , text "body =" <+> text (show body) ] ] return $ Clause { clauseRange = getRange i , clauseTel = killRange delta -- TODO: make sure delta and perm are what we want , clausePerm = perm , clausePats = ps , clauseBody = body } checkClause t (A.Clause (A.LHS _ _ _ ps@(_ : _)) _ _) = typeError $ UnexpectedWithPatterns ps checkWithFunction :: WithFunctionProblem -> TCM () checkWithFunction NoWithFunction = return () checkWithFunction (WithFunction f aux gamma delta1 delta2 vs as b qs perm cs) = do reportSDoc "tc.with.top" 10 $ vcat [ text "checkWithFunction" , nest 2 $ vcat [ text "delta1 =" <+> prettyTCM delta1 , text "delta2 =" <+> prettyTCM delta2 , text "gamma =" <+> prettyTCM gamma , text "as =" <+> prettyTCM as , text "vs =" <+> prettyTCM vs , text "b =" <+> prettyTCM b , text "qs =" <+> text (show qs) , text "perm =" <+> text (show perm) ] ] -- Add the type of the auxiliary function to the signature -- With display forms are closed df <- makeClosed <$> withDisplayForm f aux delta1 delta2 (size as) qs perm reportSLn "tc.with.top" 20 "created with display form" -- Generate the type of the with function candidateType <- withFunctionType delta1 vs as delta2 b reportSDoc "tc.with.type" 10 $ sep [ text "candidate type:", nest 2 $ prettyTCM candidateType ] absAuxType <- setShowImplicitArguments True $ disableDisplayForms $ dontReifyInteractionPoints $ reify candidateType reportSDoc "tc.with.top" 15 $ vcat [ text "type of with function:" , nest 2 $ prettyTCM absAuxType ] -- The ranges in the generated type are completely bogus, so we kill them. auxType <- setCurrentRange (getRange cs) $ isType_ $ killRange absAuxType case df of OpenThing _ (Display n ts dt) -> reportSDoc "tc.with.top" 20 $ text "Display" <+> fsep [ text (show n) , prettyList $ map prettyTCM ts , prettyTCM dt ] addConstant aux (Defn aux auxType [df] 0 $ Axiom Nothing) solveSizeConstraints reportSDoc "tc.with.top" 10 $ sep [ text "added with function" <+> (prettyTCM aux) <+> text "of type" , nest 2 $ prettyTCM auxType , nest 2 $ text "-|" <+> (prettyTCM =<< getContextTelescope) ] -- Construct the body for the with function cs <- buildWithFunction aux gamma qs perm (size delta1) (size as) cs -- Check the with function checkFunDef NotDelayed info aux cs where info = Info.mkDefInfo (nameConcrete $ qnameName aux) defaultFixity PublicAccess ConcreteDef (getRange cs) -- | Type check a where clause. The first argument is the number of variables -- bound in the left hand side. checkWhere :: Nat -> [A.Declaration] -> TCM a -> TCM a checkWhere _ [] ret = ret checkWhere n [A.ScopedDecl scope ds] ret = withScope_ scope $ checkWhere n ds ret checkWhere n [A.Section _ m tel ds] ret = do checkTelescope tel $ \tel' -> do reportSDoc "tc.def.where" 10 $ text "adding section:" <+> prettyTCM m <+> text (show (size tel')) <+> text (show n) addSection m (size tel' + n) -- the variables bound in the lhs -- are also parameters verboseS "tc.def.where" 10 $ do dx <- prettyTCM m dtel <- mapM prettyA tel dtel' <- prettyTCM =<< lookupSection m liftIO $ UTF8.putStrLn $ "checking where section " ++ show dx ++ " " ++ show dtel liftIO $ UTF8.putStrLn $ " actual tele: " ++ show dtel' x <- withCurrentModule m $ checkDecls ds >> ret return x checkWhere _ _ _ = __IMPOSSIBLE__ -- | Check if a pattern contains an absurd pattern. For instance, @suc ()@ containsAbsurdPattern :: A.Pattern -> Bool containsAbsurdPattern p = case p of A.AbsurdP _ -> True A.VarP _ -> False A.WildP _ -> False A.ImplicitP _ -> False A.DotP _ _ -> False A.LitP _ -> False A.AsP _ _ p -> containsAbsurdPattern p A.ConP _ _ ps -> any (containsAbsurdPattern . namedThing . unArg) ps A.DefP _ _ _ -> __IMPOSSIBLE__ {- -- | Type check a left-hand side. checkLHS :: [NamedArg A.Pattern] -> Type -> ([Term] -> [String] -> [Arg Pattern] -> Type -> TCM a) -> TCM a checkLHS ps t ret = do verbose 15 $ do dt <- prettyTCM t dps <- mapM prettyA ps liftIO $ UTF8.putStrLn $ "checking clause " ++ show dps ++ " : " ++ show dt -- Save the state for later. (should this be done with the undo monad, or -- would that interfere with normal undo?) rollback <- do st <- get env <- ask return $ \k -> do put st; local (const env) k -- Preliminary type checking to decide what should be variables and what -- should be dotted. Ignore empty types. runCheckPatM (checkPatterns ps t) $ \xs metas _ (ps0, ps, ts, a) -> do -- Build the new pattern, turning implicit patterns into variables when -- they couldn't be solved. ps1 <- evalStateT (buildNewPatterns ps0) metas verbose 10 $ do d0 <- A.showA ps0 d1 <- A.showA ps1 liftIO $ do UTF8.putStrLn $ "first check" UTF8.putStrLn $ " xs = " ++ show xs UTF8.putStrLn $ " metas = " ++ show metas UTF8.putStrLn $ " ps0 = " ++ d0 UTF8.putStrLn $ " ps1 = " ++ d1 verbose 10 $ do is <- mapM (instantiateFull . flip MetaV []) metas ds <- mapM prettyTCM is dts <- mapM prettyTCM =<< mapM instantiateFull ts liftIO $ UTF8.putStrLn $ " is = " ++ concat (intersperse ", " $ map show ds) liftIO $ UTF8.putStrLn $ " ts = " ++ concat (intersperse ", " $ map show dts) -- Now we forget that we ever type checked anything and type check the new -- pattern. rollback $ runCheckPatM (checkPatterns ps1 t) $ \xs metas emptyTypes (_, ps, ts, a) -> do -- Check that the empty types are indeed empty mapM_ isEmptyType emptyTypes verbose 10 $ liftIO $ do UTF8.putStrLn $ "second check" UTF8.putStrLn $ " xs = " ++ show xs UTF8.putStrLn $ " metas = " ++ show metas verbose 10 $ do is <- mapM (instantiateFull . flip MetaV []) metas ds <- mapM prettyTCM is liftIO $ UTF8.putStrLn $ " is = " ++ concat (intersperse ", " $ map show ds) -- Finally we type check the dot patterns and check that they match their -- instantiations. evalStateT (checkDotPatterns ps1) metas reportLn 15 "dot patterns check out" -- Sanity check. Make sure that all metas were instantiated. is <- mapM lookupMeta metas case [ getRange i | i <- is, FirstOrder <- [mvInstantiation i] ] of [] -> return () rs -> fail $ "unsolved pattern metas at\n" ++ unlines (map show rs) -- Make sure to purge the type and the context from any first-order metas. a <- instantiateFull a flat <- instantiateFull =<< flatContext -- The context might not be well-formed. We may have to do some reordering. reportLn 20 $ "Before reordering:" verbose 20 $ dumpContext flat flat' <- reorderCtx flat -- Compute renamings to and from the new context let sub = (computeSubst `on` map (fst . unArg)) flat flat' rsub = (computeSubst `on` map (fst . unArg)) flat' flat -- Apply the reordering to the types in the new context let flat'' = map (fmap $ id -*- substs sub) flat' reportLn 20 $ "After reordering:" verbose 20 $ dumpContext flat' -- Deflatten the context let ctx = mkContext flat'' inContext ctx $ do verbose 20 $ do d <- prettyTCM ctx dt <- prettyTCM (substs sub a) liftIO $ UTF8.putStrLn $ "context = " ++ show d liftIO $ UTF8.putStrLn $ "type = " ++ show dt reportLn 20 $ "finished type checking left hand side" ret rsub xs ps (substs sub a) where popMeta = do x : xs <- get put xs return x buildNewPatterns :: [NamedArg A.Pattern] -> StateT [MetaId] TCM [NamedArg A.Pattern] buildNewPatterns = mapM buildNewPattern' buildNewPattern' = (traverse . traverse) buildNewPattern buildNewPattern :: A.Pattern -> StateT [MetaId] TCM A.Pattern buildNewPattern (A.ImplicitP i) = do x <- popMeta v <- lift $ instantiate (MetaV x []) lift $ verbose 6 $ do d <- prettyTCM v liftIO $ UTF8.putStrLn $ "new pattern for " ++ show x ++ " = " ++ show d case v of -- Unsolved metas become variables MetaV y _ | x == y -> return $ A.WildP i -- Anything else becomes dotted _ -> do lift $ verbose 6 $ do d <- prettyTCM =<< instantiateFull v liftIO $ UTF8.putStrLn $ show x ++ " := " ++ show d scope <- lift getScope return $ A.DotP i (A.Underscore $ info scope) where info s = Info.MetaInfo (getRange i) s Nothing buildNewPattern p@(A.VarP _) = return p buildNewPattern p@(A.WildP _) = return p buildNewPattern p@(A.DotP _ _) = popMeta >> return p buildNewPattern (A.AsP i x p) = A.AsP i x <$> buildNewPattern p buildNewPattern (A.ConP i c ps) = A.ConP i c <$> buildNewPatterns ps buildNewPattern (A.DefP i c ps) = A.DefP i c <$> buildNewPatterns ps buildNewPattern p@(A.AbsurdP _) = return p buildNewPattern p@(A.LitP _) = return p checkDotPatterns :: [NamedArg A.Pattern] -> StateT [MetaId] TCM () checkDotPatterns = mapM_ checkDotPattern' checkDotPattern' p = (traverse . traverse) checkDotPattern p >> return () checkDotPattern :: A.Pattern -> StateT [MetaId] TCM () checkDotPattern (A.ImplicitP i) = __IMPOSSIBLE__ -- there should be no implicits left at this point checkDotPattern p@(A.VarP _) = return () checkDotPattern p@(A.WildP _) = return () checkDotPattern p@(A.DotP i e) = do x <- popMeta lift $ do firstOrder <- isFirstOrder x -- first order and uninstantiated when firstOrder $ typeError $ InternalError -- TODO: proper error $ "uninstantiated dot pattern at " ++ show (getRange i) HasType _ o <- mvJudgement <$> lookupMeta x a <- getOpen o v <- checkExpr e a noConstraints $ equalTerm t v (MetaV x []) checkDotPattern (A.AsP i x p) = checkDotPattern p checkDotPattern (A.ConP i c ps) = checkDotPatterns ps checkDotPattern (A.DefP i c ps) = checkDotPatterns ps checkDotPattern p@(A.AbsurdP _) = return () checkDotPattern p@(A.LitP _) = return () -- Get the flattened context flatContext :: TCM Context flatContext = do n <- size <$> getContext mapM f [0..n - 1] where f i = do Arg h t <- instantiateFull =<< typeOfBV' i x <- nameOfBV i return $ Arg h (x, t) -- Reorder a flat context to make sure it's valid. reorderCtx :: Context -> TCM Context reorderCtx ctx = reverse <$> reorder (reverse ctx) where free t = mapM nameOfBV (Set.toList $ allVars $ freeVars t) reorder :: [Arg (Name, Type)] -> TCM [Arg (Name, Type)] reorder [] = return [] reorder (Arg h (x,t) : tel) = do tel' <- reorder tel xs <- free t verbose 20 $ do d <- prettyTCM t liftIO $ UTF8.putStrLn $ "freeIn " ++ show x ++ " : " ++ show d ++ " are " ++ show xs case intersect (map (fst . unArg) tel') xs of [] -> return $ Arg h (x,t) : tel' zs -> return $ ins zs (Arg h (x,t)) tel' ins [] p tel = p : tel ins xs p (Arg h (x,t):tel) = Arg h (x,t) : ins (delete x xs) p tel ins (_:_) _ [] = __IMPOSSIBLE__ -- Compute a renaming from the first names to the second. computeSubst :: [Name] -> [Name] -> [Term] computeSubst old new = map ix old where ix x = case findIndex (==x) new of Just i -> Var i [] Nothing -> __IMPOSSIBLE__ -- Take a flat (but valid) context and turn it into a proper context. mkContext :: [Arg (Name, Type)] -> Context mkContext = reverse . mkCtx . reverse where mkCtx [] = [] mkCtx ctx0@(Arg h (x,t) : ctx) = Arg h (x, substs sub t) : mkCtx ctx where sub = map err ctx0 ++ [ Var i [] | i <- [0..] ] err (Arg _ (y,_)) = error $ show y ++ " occurs in the type of " ++ show x -- Print a flat context dumpContext :: Context -> TCM () dumpContext ctx = do let pr (Arg h (x,t)) = do d <- prettyTCM t return $ " " ++ par h (show x ++ " : " ++ show d) par Hidden s = "{" ++ s ++ "}" par NotHidden s = "(" ++ s ++ ")" ds <- mapM pr ctx liftIO $ UTF8.putStr $ unlines $ reverse ds -} actualConstructor :: MonadTCM tcm => QName -> tcm QName actualConstructor c = do v <- constructorForm =<< normalise (Con c []) case v of Con c _ -> return c _ -> actualConstructor =<< stripLambdas v where stripLambdas v = case v of Con c _ -> return c Lam h b -> do x <- freshName_ $ absName b addCtx x (Arg h $ sort Prop) $ stripLambdas (absBody b) _ -> typeError $ GenericError $ "Not a constructor: " ++ show c