{-# LANGUAGE CPP #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE TupleSections #-} {-# LANGUAGE UndecidableInstances #-} -- | Check that a datatype is strictly positive. module Agda.TypeChecking.Positivity where import Prelude hiding (null) import Control.Applicative hiding (empty) import Control.DeepSeq import Control.Monad.Reader import Data.Set (Set) import qualified Data.Set as Set import Data.Map (Map) import qualified Data.Map as Map import Data.List as List hiding (null) import Data.Maybe (mapMaybe, fromMaybe) import Debug.Trace import Agda.Syntax.Position import Agda.Syntax.Common import Agda.Syntax.Internal as I import Agda.TypeChecking.Datatypes (isDataOrRecordType, DataOrRecord(..)) import Agda.TypeChecking.Records (unguardedRecord, recursiveRecord) import Agda.TypeChecking.Monad import Agda.TypeChecking.Monad.Builtin (primInf, CoinductionKit(..), coinductionKit) import Agda.TypeChecking.Reduce import Agda.TypeChecking.Pretty import Agda.TypeChecking.Substitute import Agda.TypeChecking.Telescope import Agda.Utils.Size import Agda.Utils.List import Agda.Utils.Maybe import Agda.Utils.Monad import Agda.Utils.Null import qualified Agda.Utils.Permutation as Perm import Agda.Utils.SemiRing import qualified Agda.Utils.Graph.AdjacencyMap as Graph import Agda.Utils.Graph.AdjacencyMap (Graph) #include "undefined.h" import Agda.Utils.Impossible -- | Check that the datatypes in the mutual block containing the given -- declarations are strictly positive. -- -- Also add information about positivity and recursivity of records -- to the signature. checkStrictlyPositive :: Set QName -> TCM () checkStrictlyPositive qs = disableDestructiveUpdate $ do -- compute the occurrence graph for qs reportSDoc "tc.pos.tick" 100 $ text "positivity of" <+> prettyTCM (Set.toList qs) g <- Graph.filterEdges (\ (Edge o _) -> o /= Unused) <$> buildOccurrenceGraph qs let gstar = Graph.transitiveClosure $ fmap occ g reportSDoc "tc.pos.tick" 100 $ text "constructed graph" reportSLn "tc.pos.graph" 5 $ "Positivity graph: N=" ++ show (size $ Graph.nodes g) ++ " E=" ++ show (length $ Graph.edges g) reportSDoc "tc.pos.graph" 10 $ vcat [ text "positivity graph for" <+> prettyTCM (Set.toList qs) , nest 2 $ prettyTCM g ] reportSDoc "tc.pos.graph" 50 $ vcat [ text "transitive closure of positivity graph for" <+> prettyTCM (Set.toList qs) , nest 2 $ prettyTCM gstar ] -- remember argument occurrences for qs in the signature mapM_ (setArgs gstar) $ Set.toList qs reportSDoc "tc.pos.tick" 100 $ text "set args" -- check positivity for all strongly connected components of the graph for qs let sccs = Graph.sccs gstar reportSDoc "tc.pos.graph.sccs" 15 $ text $ " sccs = " ++ show sccs forM_ sccs $ \ scc -> setMut [ q | DefNode q <- scc ] mapM_ (checkPos g) $ Set.toList qs reportSDoc "tc.pos.tick" 100 $ text "checked positivity" where checkPos g q = do -- we check positivity only for data or record definitions whenJustM (isDatatype q) $ \ dr -> do reportSDoc "tc.pos.check" 10 $ text "Checking positivity of" <+> prettyTCM q -- get all pathes from q to q that exhibit a non-strictly occurrence -- or, in case of records, any recursive occurrence let critical IsData = \ (Edge o _) -> o <= JustPos critical IsRecord = \ (Edge o _) -> o /= Unused loops = filter (critical dr) $ Graph.allPaths (critical dr) (DefNode q) (DefNode q) g -- if we have a negative loop, raise error whenM positivityCheckEnabled $ do forM_ [ how | Edge o how <- loops, o <= JustPos ] $ \ how -> do err <- fsep $ [prettyTCM q] ++ pwords "is not strictly positive, because it occurs" ++ [prettyTCM how] setCurrentRange q $ typeError $ GenericDocError err -- if we find an unguarded record, mark it as such when (dr == IsRecord) $ do case headMaybe [ how | Edge o how <- loops, o <= StrictPos ] of Just how -> do reportSDoc "tc.pos.record" 5 $ sep [ prettyTCM q <+> text "is not guarded, because it occurs" , prettyTCM how ] unguardedRecord q checkInduction q -- otherwise, if the record is recursive, mark it as well Nothing -> forM_ (take 1 [ how | Edge GuardPos how <- loops ]) $ \ how -> do reportSDoc "tc.pos.record" 5 $ sep [ prettyTCM q <+> text "is recursive, because it occurs" , prettyTCM how ] recursiveRecord q checkInduction q checkInduction q = whenM positivityCheckEnabled $ do -- Check whether the recursive record has been declared as -- 'Inductive' or 'Coinductive'. Otherwise, error. unlessM (isJust . recInduction . theDef <$> getConstInfo q) $ do setCurrentRange (nameBindingSite $ qnameName q) $ do typeError . GenericDocError =<< text "Recursive record" <+> prettyTCM q <+> text "needs to be declared as either inductive or coinductive" occ (Edge o _) = o isDatatype q = do def <- theDef <$> getConstInfo q return $ case def of Datatype{dataClause = Nothing} -> Just IsData Record {recClause = Nothing} -> Just IsRecord _ -> Nothing -- Set the mutually recursive identifiers for a SCC. setMut [] = return () -- nothing to do setMut [q] = return () -- no mutual recursion setMut qs = forM_ qs $ \ q -> setMutual q (delete q qs) -- Set the polarity of the arguments to a definition setArgs g q = do reportSDoc "tc.pos.args" 10 $ text "checking args of" <+> prettyTCM q n <- getDefArity =<< getConstInfo q let nArgs = maximum $ n : [ i + 1 | (ArgNode q1 i) <- Set.toList $ Graph.nodes g , q1 == q ] findOcc i = fromMaybe Unused $ Graph.lookup (ArgNode q i) (DefNode q) g args = map findOcc [0..nArgs - 1] reportSDoc "tc.pos.args" 10 $ sep [ text "args of" <+> prettyTCM q <+> text "=" , nest 2 $ prettyList $ map (text . show) args ] -- The list args can take a long time to compute, but contains -- small elements, and is stored in the interface (right?), so -- it is computed deep-strictly. setArgOccurrences q $!! args getDefArity :: Definition -> TCM Int getDefArity def = case theDef def of defn@Function{} -> do let dropped = projectionArgs defn subtract dropped . arity <$> instantiateFull (defType def) Datatype{ dataPars = n } -> return n Record{ recPars = n } -> return n _ -> return 0 -- Specification of occurrences ------------------------------------------- -- | 'Occurrence' is a complete lattice with least element 'Mixed' -- and greatest element 'Unused'. -- -- It forms a commutative semiring where 'oplus' is meet (glb) -- and 'otimes' is composition. Both operations are idempotent. -- -- For 'oplus', 'Unused' is neutral (zero) and 'Mixed' is dominant. -- For 'otimes', 'StrictPos' is neutral (one) and 'Unused' is dominant. instance SemiRing Occurrence where oplus Mixed _ = Mixed -- dominant oplus _ Mixed = Mixed oplus Unused o = o -- neutral oplus o Unused = o oplus JustNeg JustNeg = JustNeg oplus JustNeg o = Mixed -- negative and any form of positve oplus o JustNeg = Mixed oplus GuardPos o = o -- second-rank neutral oplus o GuardPos = o oplus StrictPos o = o -- third-rank neutral oplus o StrictPos = o oplus JustPos JustPos = JustPos otimes Unused _ = Unused -- dominant otimes _ Unused = Unused otimes Mixed _ = Mixed -- second-rank dominance otimes _ Mixed = Mixed otimes JustNeg JustNeg = JustPos otimes JustNeg _ = JustNeg -- third-rank dominance otimes _ JustNeg = JustNeg otimes JustPos _ = JustPos -- fourth-rank dominance otimes _ JustPos = JustPos otimes GuardPos _ = GuardPos -- _ `elem` [StrictPos, GuardPos] otimes _ GuardPos = GuardPos otimes StrictPos StrictPos = StrictPos -- neutral -- | Description of an occurrence. data OccursWhere = LeftOfArrow OccursWhere | DefArg QName Nat OccursWhere -- ^ in the nth argument of a define constant | UnderInf OccursWhere -- ^ in the principal argument of built-in ∞ | VarArg OccursWhere -- ^ as an argument to a bound variable | MetaArg OccursWhere -- ^ as an argument of a metavariable | ConArgType QName OccursWhere -- ^ in the type of a constructor | IndArgType QName OccursWhere -- ^ in a datatype index of a constructor | InClause Nat OccursWhere -- ^ in the nth clause of a defined function | Matched OccursWhere -- ^ matched against in a clause of a defined function | InDefOf QName OccursWhere -- ^ in the definition of a constant | Here | Unknown -- ^ an unknown position (treated as negative) deriving (Show, Eq) (>*<) :: OccursWhere -> OccursWhere -> OccursWhere Here >*< o = o Unknown >*< o = Unknown LeftOfArrow o1 >*< o2 = LeftOfArrow (o1 >*< o2) DefArg d i o1 >*< o2 = DefArg d i (o1 >*< o2) UnderInf o1 >*< o2 = UnderInf (o1 >*< o2) VarArg o1 >*< o2 = VarArg (o1 >*< o2) MetaArg o1 >*< o2 = MetaArg (o1 >*< o2) ConArgType c o1 >*< o2 = ConArgType c (o1 >*< o2) IndArgType c o1 >*< o2 = IndArgType c (o1 >*< o2) InClause i o1 >*< o2 = InClause i (o1 >*< o2) Matched o1 >*< o2 = Matched (o1 >*< o2) InDefOf d o1 >*< o2 = InDefOf d (o1 >*< o2) instance PrettyTCM OccursWhere where prettyTCM o = prettyOs $ map maxOneLeftOfArrow $ uniq $ splitOnDef o where nth 0 = pwords "first" nth 1 = pwords "second" nth 2 = pwords "third" nth n = pwords $ show (n + 1) ++ "th" uniq (x:y:xs) | x == y = uniq (x:xs) uniq (x:xs) = x : uniq xs uniq [] = [] prettyOs [] = __IMPOSSIBLE__ prettyOs [o] = prettyO o <> text "." prettyOs (o:os) = prettyO o <> text ", which occurs" <+> prettyOs os prettyO o = case o of Here -> empty Unknown -> empty LeftOfArrow o -> explain o $ pwords "to the left of an arrow" DefArg q i o -> explain o $ pwords "in the" ++ nth i ++ pwords "argument to" ++ [prettyTCM q] UnderInf o -> do Def inf _ <- ignoreSharing <$> primInf -- this cannot fail if an 'UnderInf' has been generated explain o $ pwords "under" ++ [prettyTCM inf] VarArg o -> explain o $ pwords "in an argument to a bound variable" MetaArg o -> explain o $ pwords "in an argument to a metavariable" ConArgType c o -> explain o $ pwords "in the type of the constructor" ++ [prettyTCM c] IndArgType c o -> explain o $ pwords "in an index of the target type of the constructor" ++ [prettyTCM c] InClause i o -> explain o $ pwords "in the" ++ nth i ++ pwords "clause" Matched o -> explain o $ pwords "as matched against" InDefOf d o -> explain o $ pwords "in the definition of" ++ [prettyTCM d] explain o ds = prettyO o $$ fsep ds maxOneLeftOfArrow o = case o of LeftOfArrow o -> LeftOfArrow $ purgeArrows o Here -> Here Unknown -> Unknown DefArg q i o -> DefArg q i $ maxOneLeftOfArrow o UnderInf o -> UnderInf $ maxOneLeftOfArrow o InDefOf d o -> InDefOf d $ maxOneLeftOfArrow o VarArg o -> VarArg $ maxOneLeftOfArrow o MetaArg o -> MetaArg $ maxOneLeftOfArrow o ConArgType c o -> ConArgType c $ maxOneLeftOfArrow o IndArgType c o -> IndArgType c $ maxOneLeftOfArrow o InClause i o -> InClause i $ maxOneLeftOfArrow o Matched o -> Matched $ maxOneLeftOfArrow o purgeArrows o = case o of LeftOfArrow o -> purgeArrows o Here -> Here Unknown -> Unknown DefArg q i o -> DefArg q i $ purgeArrows o UnderInf o -> UnderInf $ purgeArrows o InDefOf d o -> InDefOf d $ purgeArrows o VarArg o -> VarArg $ purgeArrows o MetaArg o -> MetaArg $ purgeArrows o ConArgType c o -> ConArgType c $ purgeArrows o IndArgType c o -> IndArgType c $ purgeArrows o InClause i o -> InClause i $ purgeArrows o Matched o -> Matched $ purgeArrows o splitOnDef o = case o of Here -> [Here] Unknown -> [Unknown] InDefOf d o -> sp (InDefOf d) o LeftOfArrow o -> sp LeftOfArrow o DefArg q i o -> sp (DefArg q i) o UnderInf o -> sp UnderInf o VarArg o -> sp VarArg o MetaArg o -> sp MetaArg o ConArgType c o -> sp (ConArgType c) o IndArgType c o -> sp (IndArgType c) o InClause i o -> sp (InClause i) o Matched o -> sp Matched o where sp f o = case splitOnDef o of os@(InDefOf _ _:_) -> f Here : os o:os -> f o : os [] -> __IMPOSSIBLE__ -- Computing occurrences -------------------------------------------------- data Item = AnArg Nat | ADef QName deriving (Eq, Ord, Show) type Occurrences = Map Item [OccursWhere] (>+<) :: Occurrences -> Occurrences -> Occurrences (>+<) = Map.unionWith (++) concatOccurs :: [Occurrences] -> Occurrences concatOccurs = Map.unionsWith (++) occursAs :: (OccursWhere -> OccursWhere) -> Occurrences -> Occurrences occursAs f = Map.map (map f) here :: Item -> Occurrences here i = Map.singleton i [Here] -- | @onlyVarsUpTo n occs@ discards occurrences of de Bruijn index @>= n@. onlyVarsUpTo :: Nat -> Occurrences -> Occurrences onlyVarsUpTo n = Map.filterWithKey p where p (AnArg i) v = i < n p (ADef q) v = True -- | Context for computing occurrences. data OccEnv = OccEnv { vars :: [Maybe Item] -- ^ Items corresponding to the free variables. , inf :: Maybe QName -- ^ Name for ∞ builtin. } -- | Monad for computing occurrences. type OccM = Reader OccEnv withExtendedOccEnv :: Maybe Item -> OccM a -> OccM a withExtendedOccEnv i = local $ \ e -> e { vars = i : vars e } -- | Running the monad getOccurrences :: (PrettyTCM a, ComputeOccurrences a) => [Maybe Item] -> a -> TCM Occurrences getOccurrences vars a = do reportSDoc "tc.pos.occ" 20 $ text "computing occurrences in " <+> prettyTCM a kit <- coinductionKit return $ runReader (occurrences a) $ OccEnv vars $ fmap nameOfInf kit class ComputeOccurrences a where occurrences :: a -> OccM Occurrences instance ComputeOccurrences Clause where occurrences cl = do let ps = clausePats cl (concatOccurs (mapMaybe matching (zip [0..] ps)) >+<) <$> walk (patItems ps) (clauseBody cl) where matching (i, p) | properlyMatching (unArg p) = Just $ occursAs Matched $ here $ AnArg i | otherwise = Nothing walk _ NoBody = return empty walk [] (Body v) = occurrences v walk (i : pis) (Bind b) = withExtendedOccEnv i $ walk pis $ absBody b walk [] Bind{} = __IMPOSSIBLE__ walk (_ : _) Body{} = __IMPOSSIBLE__ -- @patItems ps@ creates a map from the pattern variables of @ps@ -- to the index of the argument they are bound in. -- This map is given as a list. patItems ps = concat $ zipWith patItem [0..] ps -- @patItem i p@ replicates index @i@ as often as there are -- pattern variables in @p@ (dot patterns count as variable) patItem :: Int -> I.Arg Pattern -> [Maybe Item] patItem i p = map (const $ Just $ AnArg i) $ patternVars p instance ComputeOccurrences Term where occurrences v = case v of Var i args -> do vars <- asks vars occs <- occurrences args -- Apparently some development version of GHC chokes if the -- following line is replaced by vars ! i. let mi | i < length vars = vars !! i | otherwise = flip trace __IMPOSSIBLE__ $ "impossible: occurrence of de Bruijn index " ++ show i ++ " in vars " ++ show vars ++ " is unbound" return $ maybe empty here mi >+< occursAs VarArg occs Def d args -> do inf <- asks inf let occsAs = if Just d /= inf then occursAs . DefArg d else \ n -> -- the principal argument of builtin INF (∞) is the second (n==1) -- the first is a level argument (n==0, counting from 0!) if n == 1 then occursAs UnderInf else occursAs (DefArg d n) occs <- mapM occurrences args return $ here (ADef d) >+< concatOccurs (zipWith occsAs [0..] occs) Con c args -> occurrences args MetaV _ args -> occursAs MetaArg <$> occurrences args Pi a b -> do oa <- occurrences a ob <- occurrences b return $ occursAs LeftOfArrow oa >+< ob Lam _ b -> occurrences b Level l -> occurrences l Lit{} -> return empty Sort{} -> return empty DontCare _ -> return empty -- Andreas, 2011-09-09: do we need to check for negative occurrences in irrelevant positions? Shared p -> occurrences $ derefPtr p ExtLam{} -> __IMPOSSIBLE__ instance ComputeOccurrences Level where occurrences (Max as) = occurrences as instance ComputeOccurrences PlusLevel where occurrences ClosedLevel{} = return empty occurrences (Plus _ l) = occurrences l instance ComputeOccurrences LevelAtom where occurrences l = case l of MetaLevel _ vs -> occursAs MetaArg <$> occurrences vs BlockedLevel _ v -> occurrences v NeutralLevel _ v -> occurrences v UnreducedLevel v -> occurrences v instance ComputeOccurrences Type where occurrences (El _ v) = occurrences v instance ComputeOccurrences a => ComputeOccurrences (Tele a) where occurrences EmptyTel = return empty occurrences (ExtendTel a b) = occurrences (a, b) instance ComputeOccurrences a => ComputeOccurrences (Abs a) where occurrences (Abs _ b) = withExtendedOccEnv Nothing $ occurrences b occurrences (NoAbs _ b) = occurrences b instance ComputeOccurrences a => ComputeOccurrences (Elim' a) where occurrences Proj{} = return empty occurrences (Apply a) = occurrences a instance ComputeOccurrences a => ComputeOccurrences (I.Arg a) where occurrences = occurrences . unArg instance ComputeOccurrences a => ComputeOccurrences (I.Dom a) where occurrences = occurrences . unDom instance ComputeOccurrences a => ComputeOccurrences [a] where occurrences vs = concatOccurs <$> mapM occurrences vs instance (ComputeOccurrences a, ComputeOccurrences b) => ComputeOccurrences (a, b) where occurrences (x, y) = do ox <- occurrences x oy <- occurrences y return $ ox >+< oy -- | Compute the occurrences in a given definition. computeOccurrences :: QName -> TCM Occurrences computeOccurrences q = do def <- getConstInfo q occursAs (InDefOf q) <$> case theDef def of Function{funClauses = cs} -> do n <- getDefArity def cs <- map (etaExpandClause n) <$> instantiateFull cs concatOccurs . zipWith (occursAs . InClause) [0..] <$> mapM (getOccurrences []) cs Datatype{dataClause = Just c} -> getOccurrences [] =<< instantiateFull c Datatype{dataPars = np, dataCons = cs} -> do -- Andreas, 2013-02-27: first, each data index occurs as matched on. TelV tel t <- telView $ defType def let xs = [np .. size tel - 1] -- argument positions corresponding to indices ioccs = concatOccurs $ map (occursAs Matched . here . AnArg) xs -- Then, we compute the occurrences in the constructor types. let conOcc c = do a <- defType <$> getConstInfo c TelV tel t <- telView' <$> normalise a -- normalization needed e.g. for test/succeed/Bush.agda let indices = case unEl t of Def _ vs -> genericDrop np vs _ -> __IMPOSSIBLE__ let tel' = telFromList $ genericDrop np $ telToList tel vars np = map (Just . AnArg) $ downFrom np (>+<) <$> (occursAs (ConArgType c) <$> getOccurrences (vars np) tel') <*> (occursAs (IndArgType c) . onlyVarsUpTo np <$> getOccurrences (vars $ size tel) indices) (>+<) ioccs <$> (concatOccurs <$> mapM conOcc cs) Record{recClause = Just c} -> getOccurrences [] =<< instantiateFull c Record{recPars = np, recTel = tel} -> do let tel' = telFromList $ genericDrop np $ telToList tel vars = map (Just . AnArg) $ downFrom np getOccurrences vars =<< instantiateFull tel' -- Arguments to other kinds of definitions are hard-wired. Constructor{} -> return empty Axiom{} -> return empty Primitive{} -> return empty -- | Eta expand a clause to have the given number of variables. -- Warning: doesn't update telescope or permutation! -- This is used instead of special treatment of lambdas -- (which was unsound: issue 121) etaExpandClause :: Nat -> Clause -> Clause etaExpandClause n c@Clause{ namedClausePats = ps, clauseBody = b } | m <= 0 = c | otherwise = c { namedClausePats = ps ++ genericReplicate m (defaultArg $ unnamed $ VarP underscore) , clauseBody = liftBody m b , clauseTel = telFromList $ replicate n $ (underscore,) <$> dummyDom -- Not __IMPOSSIBLE__ because of debug printing , clausePerm = Perm.idP n -- ditto } where m = n - genericLength ps bind 0 = id bind n = Bind . Abs underscore . bind (n - 1) vars = map (defaultArg . var) $ downFrom m -- vars = reverse [ defaultArg $ var i | i <- [0..m - 1] ] liftBody m (Bind b) = Bind $ fmap (liftBody m) b liftBody m NoBody = bind m NoBody liftBody m (Body v) = bind m $ Body $ raise m v `apply` vars -- Building the occurrence graph ------------------------------------------ data Node = DefNode QName | ArgNode QName Nat deriving (Eq, Ord) instance Show Node where show (DefNode q) = show q show (ArgNode q i) = show q ++ "." ++ show i instance PrettyTCM Node where prettyTCM (DefNode q) = prettyTCM q prettyTCM (ArgNode q i) = prettyTCM q <> text ("." ++ show i) instance PrettyTCM Occurrence where prettyTCM GuardPos = text "-[g+]->" prettyTCM StrictPos = text "-[++]->" prettyTCM JustPos = text "-[+]->" prettyTCM JustNeg = text "-[-]->" prettyTCM Mixed = text "-[*]->" prettyTCM Unused = text "-[ ]->" -- | Pairing something with a node (for printing only). data WithNode n a = WithNode n a instance PrettyTCM n => PrettyTCM (WithNode n Edge) where prettyTCM (WithNode n (Edge o w)) = prettyTCM o <+> prettyTCM n <+> fsep (pwords $ show w) instance PrettyTCM n => PrettyTCM (WithNode n Occurrence) where prettyTCM (WithNode n o) = prettyTCM o <+> prettyTCM n instance (PrettyTCM n, PrettyTCM (WithNode n e)) => PrettyTCM (Graph n e) where prettyTCM g = vcat $ map pr $ Map.assocs $ Graph.unGraph g where pr (n, es) = sep [ prettyTCM n , nest 2 $ vcat $ map (prettyTCM . uncurry WithNode) $ Map.assocs es ] -- | Edge labels for the positivity graph. data Edge = Edge Occurrence OccursWhere deriving (Show) -- | These operations form a semiring if we quotient by the relation -- \"the 'Occurrence' components are equal\". instance SemiRing Edge where oplus _ e@(Edge Mixed _) = e -- dominant oplus e@(Edge Mixed _) _ = e oplus (Edge Unused _) e = e -- neutral oplus e (Edge Unused _) = e oplus (Edge JustNeg _) e@(Edge JustNeg _) = e oplus _ e@(Edge JustNeg w) = Edge Mixed w oplus e@(Edge JustNeg w) _ = Edge Mixed w oplus _ e@(Edge JustPos _) = e -- dominates strict pos. oplus e@(Edge JustPos _) _ = e oplus _ e@(Edge StrictPos _) = e -- dominates 'GuardPos' oplus e@(Edge StrictPos _) _ = e oplus (Edge GuardPos _) e@(Edge GuardPos _) = e otimes (Edge o1 w1) (Edge o2 w2) = Edge (otimes o1 o2) (w1 >*< w2) buildOccurrenceGraph :: Set QName -> TCM (Graph Node Edge) buildOccurrenceGraph qs = Graph.unions <$> mapM defGraph (Set.toList qs) where defGraph :: QName -> TCM (Graph Node Edge) defGraph q = do occs <- computeOccurrences q let onItem (item, occs) = do es <- mapM (computeEdge qs) occs return $ Graph.unions $ map (\(b, w) -> Graph.singleton (itemToNode item) b w) es Graph.unions <$> mapM onItem (Map.assocs occs) where itemToNode (AnArg i) = ArgNode q i itemToNode (ADef q) = DefNode q -- | Given an 'OccursWhere' computes the target node and an 'Edge'. The first -- argument is the set of names in the current mutual block. computeEdge :: Set QName -> OccursWhere -> TCM (Node, Edge) computeEdge muts o = do (to, occ) <- mkEdge __IMPOSSIBLE__ StrictPos o return (to, Edge occ o) where mkEdge to pol o = case o of Here -> return (to, pol) Unknown -> return (to, Mixed) VarArg o -> mixed o MetaArg o -> mixed o LeftOfArrow o -> negative o DefArg d i o -> do isDR <- isDataOrRecordType d let pol' | isDR == Just IsData = GuardPos -- a datatype is guarding | otherwise = StrictPos if Set.member d muts then mkEdge (ArgNode d i) pol' o else addPol o =<< otimes pol' <$> getArgOccurrence d i {- DefArg d i o | Set.member d muts -> inArg d i o | otherwise -> addPol o =<< getArgOccurrence d i -} UnderInf o -> addPol o GuardPos -- Andreas, 2012-06-09: ∞ is guarding ConArgType _ o -> keepGoing o IndArgType _ o -> mixed o InClause _ o -> keepGoing o Matched o -> mixed o -- consider arguments matched against as used InDefOf d o -> do isDR <- isDataOrRecordType d let pol' | isDR == Just IsData = GuardPos -- a datatype is guarding | otherwise = StrictPos mkEdge (DefNode d) pol' o where keepGoing = mkEdge to pol mixed = mkEdge to Mixed negative o = mkEdge to (otimes pol JustNeg) o addPol o pol' = mkEdge to (otimes pol pol') o -- Reset polarity when changing the target node -- D: (A B -> C) generates a positive edge B --> A.1 -- even though the context is negative. inArg d i = mkEdge (ArgNode d i) StrictPos