{-# LANGUAGE CPP #-} {-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE DeriveFoldable #-} {-# LANGUAGE DeriveFunctor #-} {-# LANGUAGE DeriveTraversable #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE GeneralizedNewtypeDeriving #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE PatternGuards #-} {-# LANGUAGE TupleSections #-} module Agda.TypeChecking.Rules.LHS.Unify where import Prelude hiding (null) import Control.Arrow ((***)) import Control.Applicative hiding (empty) import Control.Monad.State import Control.Monad.Reader import Control.Monad.Writer (WriterT(..), MonadWriter(..), Monoid(..)) import Data.IntMap (IntMap) import qualified Data.IntMap as IntMap import Data.Map (Map) import qualified Data.Map as Map import Data.List hiding (null, sort) import Data.Typeable (Typeable) import Data.Foldable (Foldable) import Data.Traversable (Traversable,traverse) import Agda.Interaction.Options (optInjectiveTypeConstructors) import Agda.Syntax.Common import Agda.Syntax.Internal as I hiding (Substitution) import Agda.Syntax.Literal import Agda.Syntax.Position import Agda.TypeChecking.Monad import Agda.TypeChecking.Monad.Exception import Agda.TypeChecking.Monad.Builtin (constructorForm) import Agda.TypeChecking.Conversion -- equalTerm import Agda.TypeChecking.Constraints import Agda.TypeChecking.Datatypes import Agda.TypeChecking.DropArgs import Agda.TypeChecking.Level (reallyUnLevelView) import Agda.TypeChecking.Reduce import Agda.TypeChecking.Pretty import Agda.TypeChecking.Substitute hiding (Substitution) import qualified Agda.TypeChecking.Substitute as S import Agda.TypeChecking.Telescope import Agda.TypeChecking.Free import Agda.TypeChecking.Records import Agda.TypeChecking.MetaVars (assignV, newArgsMetaCtx) import Agda.TypeChecking.EtaContract import Agda.Interaction.Options (optInjectiveTypeConstructors, optWithoutK) import Agda.TypeChecking.Rules.LHS.Problem -- import Agda.TypeChecking.SyntacticEquality import Agda.Utils.Except ( Error(noMsg, strMsg) , MonadError(catchError, throwError) ) import Agda.Utils.Either import Agda.Utils.Maybe import Agda.Utils.Monad import Agda.Utils.Null import Agda.Utils.Size #include "undefined.h" import Agda.Utils.Impossible -- | Result of 'unifyIndices'. type UnificationResult = UnificationResult' Substitution data UnificationResult' a = Unifies a -- ^ Unification succeeded. | NoUnify TCErr -- ^ Terms are not unifiable. | DontKnow TCErr -- ^ Some other error happened, unification got stuck. deriving (Typeable, Show, Functor, Foldable, Traversable) -- | Monad for unification. newtype Unify a = U { unUnify :: ReaderT UnifyEnv ( WriterT UnifyOutput ( ExceptionT UnifyException ( StateT UnifyState TCM))) a } deriving ( Monad, MonadIO, Functor, Applicative , MonadException UnifyException, MonadWriter UnifyOutput) instance MonadTCM Unify where liftTCM = U . lift . lift . lift . lift instance MonadState TCState Unify where get = liftTCM $ get put = liftTCM . put instance MonadReader TCEnv Unify where ask = U $ ReaderT $ \ _ -> ask local cont (U (ReaderT f)) = U $ ReaderT $ \ a -> local cont (f a) instance HasConstInfo Unify where getConstInfo = U . lift . lift . lift . lift . getConstInfo -- UnifyEnv ------------------------------------------------------------------------ data UnifyMayPostpone = MayPostpone | MayNotPostpone type UnifyEnv = UnifyMayPostpone emptyUEnv :: UnifyEnv emptyUEnv = MayPostpone noPostponing :: Unify a -> Unify a noPostponing = U . local (const MayNotPostpone) . unUnify askPostpone :: Unify UnifyMayPostpone askPostpone = U $ ask -- | Output the result of unification (success or maybe). type UnifyOutput = Unifiable -- | Were two terms unifiable or did we have to postpone some equation such that we are not sure? data Unifiable = Definitely -- ^ Unification succeeded. | Possibly -- ^ Unification did not fail, but we had to postpone a part. -- | Conjunctive monoid. instance Monoid Unifiable where mempty = Definitely mappend Definitely Definitely = Definitely mappend _ _ = Possibly -- | Tell that something could not be unified right now, -- so the unification succeeds only 'Possibly'. reportPostponing :: Unify () reportPostponing = tell Possibly -- | Check whether unification proceeded without postponement. ifClean :: Unify () -> Unify a -> Unify a -> Unify a ifClean m t e = do ok <- snd <$> listen m case ok of Definitely -> t Possibly -> e data Equality = Equal TypeHH Term Term type Sub = IntMap Term data UnifyException = ConstructorMismatch Type Term Term | StronglyRigidOccurrence Type Term Term | UnclearOccurrence Type Term Term | WithoutKException Type Term Term | GenericUnifyException String instance Error UnifyException where noMsg = strMsg "" strMsg = GenericUnifyException data UnifyState = USt { uniSub :: Sub , uniConstr :: [Equality] } emptyUState :: UnifyState emptyUState = USt IntMap.empty [] -- | Throw-away error message. projectionMismatch :: QName -> QName -> Unify a projectionMismatch f f' = throwException $ GenericUnifyException $ "projections " ++ show f ++ " and " ++ show f' ++ " do not match" constructorMismatch :: Type -> Term -> Term -> Unify a constructorMismatch a u v = throwException $ ConstructorMismatch a u v constructorMismatchHH :: TypeHH -> Term -> Term -> Unify a constructorMismatchHH aHH u v = do ifM (liftTCM fullyApplied `and2M` canCompare aHH) {- then -} (constructorMismatch (leftHH aHH) u v) -- do not report heterogenity {- else -} (throwException (UnclearOccurrence (leftHH aHH) u v)) where -- Comparing constructors at different types is incompatible with univalence canCompare (Het s t) = ifM (liftTCM $ optWithoutK <$> pragmaOptions) (liftTCM $ tryConversion $ equalType s t) -- no constraints left (return True) canCompare Hom{} = return True -- Issue 1497: only fully applied constructors can mismatch fullyApplied = case (ignoreSharing u, ignoreSharing v) of (Con c us, Con d vs) -> do when (c == d) __IMPOSSIBLE__ car <- fromLeft length <$> getConstructorArity (conName c) dar <- fromLeft length <$> getConstructorArity (conName d) return $ length us == car && length vs == dar _ -> return True -- could be literals instance Subst Equality where applySubst rho (Equal a s t) = Equal (applySubst rho a) (applySubst rho s) (applySubst rho t) getSub :: Unify Sub getSub = U $ gets uniSub modSub :: (Sub -> Sub) -> Unify () modSub f = U $ modify $ \s -> s { uniSub = f $ uniSub s } checkEqualities :: [Equality] -> TCM () checkEqualities eqs = noConstraints $ mapM_ checkEq eqs where checkEq (Equal (Hom a) s t) = equalTerm a s t checkEq (Equal (Het a1 a2) s t) = typeError $ HeterogeneousEquality s a1 t a2 -- Andreas, 2014-03-03: Alternatively, one could try to get back -- to a homogeneous situation. Unless there is a case where this -- actually helps, I leave it deactivated. -- KEEP: -- -- checkEq (Equal (Het a1 a2) s t) = do -- noConstraints $ do -- equalType a1 a2 -- equalTerm a1 s t -- `catchError` \ _ -> typeError $ HeterogeneousEquality s a1 t a2 -- | Force equality now instead of postponing it using 'addEquality'. checkEquality :: Type -> Term -> Term -> TCM () checkEquality a u v = noConstraints $ equalTerm a u v -- | Try equality. If constraints remain, postpone (enter unsafe mode). -- Heterogeneous equalities cannot be tried nor reawakened, -- so we can throw them away and flag "dirty". checkEqualityHH :: TypeHH -> Term -> Term -> Unify () checkEqualityHH (Hom a) u v = do ok <- liftTCM $ tryConversion $ equalTerm a u v -- no constraints left -- Jesper, 2013-11-21: Refuse to solve reflexive equations when --without-K is enabled if ok then (whenM (liftTCM $ optWithoutK <$> pragmaOptions) (throwException $ WithoutKException a u v)) else (addEquality a u v) checkEqualityHH aHH@(Het a1 a2) u v = -- reportPostponing -- enter "dirty" mode addEqualityHH aHH u v -- postpone, enter "dirty" mode -- | Check whether heterogeneous situation is really homogeneous. -- If not, give up. forceHom :: TypeHH -> TCM Type forceHom (Hom a) = return a forceHom (Het a1 a2) = a1 <$ do noConstraints $ equalType a1 a2 -- | Check whether heterogeneous situation is really homogeneous. -- If not, return Nothing. makeHom :: TypeHH -> TCM (Maybe Type) makeHom aHH = (Just <$> forceHom aHH) `catchError` \ err -> return Nothing -- | Try to make a possibly heterogeneous term situation homogeneous. tryHom :: TypeHH -> Term -> Term -> TCM TermHH tryHom aHH u v = do a <- forceHom aHH Hom u <$ checkEquality a u v `catchError` \ err -> return $ Het u v addEquality :: Type -> Term -> Term -> Unify () addEquality a = addEqualityHH (Hom a) addEqualityHH :: TypeHH -> Term -> Term -> Unify () addEqualityHH aHH u v = do reportPostponing U $ modify $ \s -> s { uniConstr = Equal aHH u v : uniConstr s } takeEqualities :: Unify [Equality] takeEqualities = U $ do s <- get put $ s { uniConstr = [] } return $ uniConstr s -- | Includes flexible occurrences, metas need to be solved. TODO: relax? -- TODO: later solutions may remove flexible occurences occursCheck :: Nat -> Term -> Type -> Unify () occursCheck i u a = do let fv = freeVars u v = var i case occurrence i fv of -- Andreas, 2011-04-14 -- a strongly rigid recursive occurrences signals unsolvability StronglyRigid -> do liftTCM $ reportSDoc "tc.lhs.unify" 20 $ prettyTCM v <+> text "occurs strongly rigidly in" <+> prettyTCM u throwException $ StronglyRigidOccurrence a v u NoOccurrence -> return () -- this includes irrelevant occurrences! -- any other recursive occurrence leads to unclear situation _ -> do liftTCM $ reportSDoc "tc.lhs.unify" 20 $ prettyTCM v <+> text "occurs in" <+> prettyTCM u throwException $ UnclearOccurrence a v u -- | Assignment with preceding occurs check. (|->) :: Nat -> (Term, Type) -> Unify () i |-> (u, a) = do occursCheck i u a liftTCM $ reportSDoc "tc.lhs.unify.assign" 15 $ prettyTCM (var i) <+> text ":=" <+> prettyTCM u modSub $ IntMap.insert i (killRange u) -- Apply substitution to itself (issue 552) rho <- getSub rho' <- traverse ureduce rho modSub $ const rho' makeSubstitution :: Sub -> S.Substitution makeSubstitution sub | null sub = idS | otherwise = map val [0 .. highestIndex] ++# raiseS (highestIndex + 1) where highestIndex = fst $ IntMap.findMax sub val i = fromMaybe (var i) $ IntMap.lookup i sub -- | Apply the current substitution on a term and reduce to weak head normal form. class UReduce t where ureduce :: t -> Unify t instance UReduce Term where ureduce u = doEtaContractImplicit $ do rho <- makeSubstitution <$> getSub -- Andreas, 2013-10-24 the following call to 'normalise' is problematic -- (see issue 924). Instead, we only normalize if unifyAtomHH is undecided. -- liftTCM $ etaContract =<< normalise (applySubst rho u) -- Andreas, 2011-06-22, fix related to issue 423 -- To make eta contraction work better, I switched reduce to normalise. -- I hope the performance penalty is not big (since we are dealing with -- l.h.s. terms only). -- A systematic solution would make unification type-directed and -- eta-insensitive... liftTCM $ etaContract =<< reduce (applySubst rho u) instance UReduce Type where ureduce (El s t) = El s <$> ureduce t instance UReduce t => UReduce (HomHet t) where ureduce (Hom t) = Hom <$> ureduce t ureduce (Het t1 t2) = Het <$> ureduce t1 <*> ureduce t2 -- Andreas, 2014-03-03 A variant of ureduce that tries to get back -- to a homogeneous situation by checking syntactic equality. -- Did not solve issue 1071, so I am reverting to the old ureduce. -- However, KEEP THIS as an alternative to reconsider. -- Remember to import TypeChecking.SyntacticEquality! -- -- instance (SynEq t, UReduce t) => UReduce (HomHet t) where -- ureduce (Hom t) = Hom <$> ureduce t -- ureduce (Het t1 t2) = do -- t1 <- ureduce t1 -- t2 <- ureduce t2 -- ((t1,t2),equal) <- liftTCM $ checkSyntacticEquality t1 t2 -- -- BRITTLE: syntactic equality only -- return $ if equal then Hom t1 else Het t1 t2 instance UReduce t => UReduce (Maybe t) where ureduce Nothing = return Nothing ureduce (Just t) = Just <$> ureduce t instance (UReduce a, UReduce b) => UReduce (a, b) where ureduce (a, b) = (,) <$> ureduce a <*> ureduce b instance (UReduce a, UReduce b, UReduce c) => UReduce (a, b, c) where ureduce (a, b, c) = (\x y z -> (x, y, z)) <$> ureduce a <*> ureduce b <*> ureduce c instance (UReduce a) => UReduce (I.Arg a) where ureduce (Arg c e) = Arg c <$> ureduce e instance (UReduce a) => UReduce [ a ] where ureduce = sequence . (map ureduce) -- | Take a substitution σ and ensure that no variables from the domain appear -- in the targets. The context of the targets is not changed. -- TODO: can this be expressed using makeSubstitution and applySubst? flattenSubstitution :: Substitution -> Substitution flattenSubstitution s = foldr instantiate s is where -- instantiated variables is = [ i | (i, Just _) <- zip [0..] s ] instantiate :: Nat -> Substitution -> Substitution instantiate i s = map (fmap $ inst i u) s where Just u = s !! i -- @inst i u v@ replaces index @i@ in @v@ by @u@, without removing the index. inst :: Nat -> Term -> Term -> Term inst i u v = applySubst us v where us = [ var j | j <- [0..i - 1] ] ++# consS u (raiseS $ i + 1) -- | Are we in a homogeneous (one type) or heterogeneous (two types) situation? data HomHet a = Hom a -- ^ homogeneous | Het a a -- ^ heterogeneous deriving (Typeable, Show, Eq, Ord, Functor, Foldable, Traversable) isHom :: HomHet a -> Bool isHom Hom{} = True isHom Het{} = False fromHom :: HomHet a -> a fromHom (Hom a) = a fromHom (Het{}) = __IMPOSSIBLE__ leftHH :: HomHet a -> a leftHH (Hom a) = a leftHH (Het a1 a2) = a1 rightHH :: HomHet a -> a rightHH (Hom a) = a rightHH (Het a1 a2) = a2 instance (Subst a) => Subst (HomHet a) where applySubst rho u = fmap (applySubst rho) u instance (PrettyTCM a) => PrettyTCM (HomHet a) where prettyTCM (Hom a) = prettyTCM a prettyTCM (Het a1 a2) = prettyTCM a1 <+> text "||" <+> prettyTCM a2 type TermHH = HomHet Term type TypeHH = HomHet Type --type FunViewHH = FunV TypeHH type TelHH = Tele (I.Dom TypeHH) type TelViewHH = TelV TypeHH type ArgsHH = HomHet Args absAppHH :: SubstHH t tHH => Abs t -> TermHH -> tHH absAppHH (Abs _ t) u = substHH u t absAppHH (NoAbs _ t) u = trivialHH t class ApplyHH t where applyHH :: t -> HomHet Args -> HomHet t instance ApplyHH Term where applyHH t = fmap (apply t) instance ApplyHH Type where applyHH t = fmap (apply t) substHH :: SubstHH t tHH => TermHH -> t -> tHH substHH = substUnderHH 0 -- | @substHH u t@ substitutes @u@ for the 0th variable in @t@. class SubstHH t tHH where substUnderHH :: Nat -> TermHH -> t -> tHH trivialHH :: t -> tHH instance (Free a, Subst a) => SubstHH (HomHet a) (HomHet a) where substUnderHH n (Hom u) t = fmap (substUnder n u) t substUnderHH n (Het u1 u2) (Hom t) = if n `relevantIn` t then Het (substUnder n u1 t) (substUnder n u2 t) else Hom (substUnder n u1 t) substUnderHH n (Het u1 u2) (Het t1 t2) = Het (substUnder n u1 t1) (substUnder n u2 t2) trivialHH = id instance SubstHH Term (HomHet Term) where substUnderHH n uHH t = fmap (\ u -> substUnder n u t) uHH trivialHH = Hom instance SubstHH Type (HomHet Type) where substUnderHH n uHH (El s t) = fmap (\ u -> El s $ substUnder n u t) uHH -- fmap $ fmap (\ (El s v) -> El s $ substUnderHH n u v) -- we ignore sorts in substitution, since they do not contain -- terms we can match on trivialHH = Hom instance SubstHH a b => SubstHH (I.Arg a) (I.Arg b) where substUnderHH n u = fmap $ substUnderHH n u trivialHH = fmap trivialHH instance SubstHH a b => SubstHH (I.Dom a) (I.Dom b) where substUnderHH n u = fmap $ substUnderHH n u trivialHH = fmap trivialHH instance SubstHH a b => SubstHH (Abs a) (Abs b) where substUnderHH n u (Abs x v) = Abs x $ substUnderHH (n + 1) u v substUnderHH n u (NoAbs x v) = NoAbs x $ substUnderHH n u v trivialHH = fmap trivialHH instance (SubstHH a a', SubstHH b b') => SubstHH (a,b) (a',b') where substUnderHH n u (x,y) = (substUnderHH n u x, substUnderHH n u y) trivialHH = trivialHH *** trivialHH instance SubstHH a b => SubstHH (Tele a) (Tele b) where substUnderHH n u EmptyTel = EmptyTel substUnderHH n u (ExtendTel t tel) = uncurry ExtendTel $ substUnderHH n u (t, tel) trivialHH = fmap trivialHH -- | Unify indices. -- -- In @unifyIndices_ flex a us vs@, -- -- @a@ is the type eliminated by @us@ and @vs@ -- (usally the type of a constructor), -- need not be reduced, -- -- @us@ and @vs@ are the argument lists to unify, -- -- @flex@ is the set of flexible (instantiable) variabes in @us@ and @vs@. -- -- The result is the most general unifier of @us@ and @vs@. unifyIndices_ :: MonadTCM tcm => FlexibleVars -> Type -> Args -> Args -> tcm Substitution unifyIndices_ flex a us vs = liftTCM $ do r <- unifyIndices flex a us vs case r of Unifies sub -> return sub DontKnow err -> throwError err NoUnify err -> throwError err unifyIndices :: MonadTCM tcm => FlexibleVars -> Type -> Args -> Args -> tcm UnificationResult unifyIndices flex a us vs = liftTCM $ do a <- reduce a reportSDoc "tc.lhs.unify" 10 $ sep [ text "unifyIndices" , nest 2 $ text (show flex) , nest 2 $ parens (prettyTCM a) , nest 2 $ prettyList $ map prettyTCM us , nest 2 $ prettyList $ map prettyTCM vs , nest 2 $ text "context: " <+> (prettyTCM =<< getContextTelescope) ] (r, USt s eqs) <- flip runStateT emptyUState . runExceptionT . runWriterT . flip runReaderT emptyUEnv . unUnify $ do ifClean (unifyConstructorArgs (Hom a) us vs) -- clean: continue unifying recheckConstraints -- dirty: just check equalities to trigger error message recheckEqualities case r of Left (ConstructorMismatch a u v) -> noUnify a u v -- Andreas 2011-04-14: Left (StronglyRigidOccurrence a u v) -> noUnify a u v Left (UnclearOccurrence a u v) -> typeError $ UnequalTerms CmpEq u v a Left (WithoutKException a u v) -> typeError $ WithoutKError a u v Left (GenericUnifyException err) -> typeError $ GenericError err Right _ -> do checkEqualities $ applySubst (makeSubstitution s) eqs let n = maximum $ (-1) : flex' return $ Unifies $ flattenSubstitution [ IntMap.lookup i s | i <- [0..n] ] `catchError` \err -> case err of TypeError _ (Closure {clValue = WithoutKError{}}) -> throwError err _ -> return $ DontKnow err where noUnify a u v = NoUnify <$> do typeError_ $ UnequalTerms CmpEq u v a flex' = map flexVar flex flexible i = i `elem` flex' findFlexible i = find ((i ==) . flexVar) flex flexibleHid i = fmap getHiding $ findFlexible i flexibleTerm (Var i []) = flexible i flexibleTerm (Shared p) = flexibleTerm (derefPtr p) flexibleTerm _ = False {- Andreas, 2011-09-12 We unify constructors in heterogeneous situations, as long as the two types have the same shape (construct the same datatype). -} unifyConstructorArgs :: TypeHH -- ^ The ureduced type of the constructor, instantiated to the parameters. -- Possibly heterogeneous, since pars of lhs and rhs might differ. -> [I.Arg Term] -- ^ the arguments of the constructor (lhs) -> [I.Arg Term] -- ^ the arguments of the constructor (rhs) -> Unify () unifyConstructorArgs a12 [] [] = return () unifyConstructorArgs a12 vs1 vs2 = do liftTCM $ reportSDoc "tc.lhs.unify" 15 $ sep [ text "unifyConstructorArgs" -- , nest 2 $ parens (prettyTCM tel0) , nest 2 $ prettyList $ map prettyTCM vs1 , nest 2 $ prettyList $ map prettyTCM vs2 , nest 2 $ text "constructor type:" <+> prettyTCM a12 ] let n = genericLength vs1 -- since c vs1 and c vs2 have same-shaped type -- vs1 and vs2 must have same length when (n /= genericLength vs2) $ __IMPOSSIBLE__ TelV tel12 _ <- telViewUpToHH n a12 -- if the length of tel12 is not n, then something is wrong -- e.g. a12 is not a same-shaped pair of types when (n /= size tel12) $ __IMPOSSIBLE__ unifyConArgs tel12 vs1 vs2 unifyConArgs :: TelHH -- ^ The telescope(s) of the constructor args [length = n]. -> Args -- ^ the arguments of the constructor (lhs) [length = n]. -> Args -- ^ the arguments of the constructor (rhs) [length = n]. -> Unify () unifyConArgs _ (_ : _) [] = __IMPOSSIBLE__ unifyConArgs _ [] (_ : _) = __IMPOSSIBLE__ unifyConArgs _ [] [] = return () unifyConArgs EmptyTel _ _ = __IMPOSSIBLE__ unifyConArgs tel0@(ExtendTel a@(Dom _ bHH) tel) us0@(arg@(Arg _ u) : us) vs0@(Arg _ v : vs) = do liftTCM $ reportSDoc "tc.lhs.unify" 15 $ sep [ text "unifyConArgs" -- , nest 2 $ parens (prettyTCM tel0) , nest 2 $ prettyList $ map prettyTCM us0 , nest 2 $ prettyList $ map prettyTCM vs0 , nest 2 $ text "at telescope" <+> prettyTCM bHH <+> text ("(" ++ show (getRelevance a) ++ ") ...") ] liftTCM $ reportSDoc "tc.lhs.unify" 25 $ (text $ "tel0 = " ++ show tel0) -- Andreas, Ulf, 2011-09-08 (AIM XIV) -- in case of dependent function type, we cannot postpone -- unification of u and v, otherwise us or vs might be ill-typed -- skip irrelevant parts uHH <- if getRelevance a == Irrelevant then return $ Hom u else -- Andreas, 2015-01-19 Forced constructor arguments are not unified. -- Andreas, 2015-02-26 Restricting this to big forced arguments; -- this still addresses issue 1406. if getRelevance a == Forced Big then liftTCM $ tryHom bHH u v else ifClean (unifyHH bHH u v) (return $ Hom u) (return $ Het u v) liftTCM $ reportSDoc "tc.lhs.unify" 25 $ (text "uHH (before ureduce) =" <+> prettyTCM uHH) uHH <- traverse ureduce uHH liftTCM $ reportSDoc "tc.lhs.unify" 25 $ (text "uHH (after ureduce) =" <+> prettyTCM uHH) unifyConArgs (tel `absAppHH` uHH) us vs -- | Used for arguments of a 'Def'. unifyElims :: Type -> Elims -> Elims -> Unify () unifyElims _ (_ : _) [] = __IMPOSSIBLE__ unifyElims _ [] (_ : _) = __IMPOSSIBLE__ unifyElims _ [] [] = return () unifyElims _ (Proj{} : _) (Apply{} : _) = __IMPOSSIBLE__ -- Andreas, 2013-10-19 unifyElims _ (Apply{} : _) (Proj{} : _) = __IMPOSSIBLE__ -- being optimistic unifyElims t (Proj f : es1) (Proj f' : es2) | f == f' = do maybe __IMPOSSIBLE__ (\ t -> unifyElims t es1 es2) =<< do liftTCM $ projectType t f | otherwise = projectionMismatch f f' unifyElims a us0@(Apply arg@(Arg _ u) : us) vs0@(Apply (Arg _ v) : vs) = do liftTCM $ reportSDoc "tc.lhs.unify" 15 $ sep [ text "unifyElims" , nest 2 $ parens (prettyTCM a) , nest 2 $ prettyList $ map prettyTCM us0 , nest 2 $ prettyList $ map prettyTCM vs0 ] a <- ureduce a -- Q: reduce sufficient? case ignoreSharing $ unEl a of Pi b _ -> do -- Andreas, Ulf, 2011-09-08 (AIM XVI) -- in case of dependent function type, we cannot postpone -- unification of u and v, otherwise us or vs might be ill-typed let dep = dependent $ unEl a -- skip irrelevant parts unless (isIrrelevant b) $ (if dep then noPostponing else id) $ unify (unDom b) u v arg <- traverse ureduce arg unifyElims (a `piApply` [arg]) us vs _ -> __IMPOSSIBLE__ where dependent (Pi _ NoAbs{}) = False dependent (Pi b c) = 0 `relevantIn` absBody c dependent (Shared p) = dependent (derefPtr p) dependent _ = False {- -- | Used for arguments of a 'Def', not 'Con'. unifyArgs :: Type -> [I.Arg Term] -> [I.Arg Term] -> Unify () unifyArgs _ (_ : _) [] = __IMPOSSIBLE__ unifyArgs _ [] (_ : _) = __IMPOSSIBLE__ unifyArgs _ [] [] = return () unifyArgs a us0@(arg@(Arg _ u) : us) vs0@(Arg _ v : vs) = do liftTCM $ reportSDoc "tc.lhs.unify" 15 $ sep [ text "unifyArgs" , nest 2 $ parens (prettyTCM a) , nest 2 $ prettyList $ map prettyTCM us0 , nest 2 $ prettyList $ map prettyTCM vs0 ] a <- ureduce a -- Q: reduce sufficient? case ignoreSharing $ unEl a of Pi b _ -> do -- Andreas, Ulf, 2011-09-08 (AIM XVI) -- in case of dependent function type, we cannot postpone -- unification of u and v, otherwise us or vs might be ill-typed let dep = dependent $ unEl a -- skip irrelevant parts unless (isIrrelevant b) $ (if dep then noPostponing else id) $ unify (unDom b) u v arg <- traverse ureduce arg unifyArgs (a `piApply` [arg]) us vs _ -> __IMPOSSIBLE__ where dependent (Pi _ NoAbs{}) = False dependent (Pi b c) = 0 `relevantIn` absBody c dependent (Shared p) = dependent (derefPtr p) dependent _ = False -} -- | Check using conversion check. recheckEqualities :: Unify () recheckEqualities = do eqs <- takeEqualities liftTCM $ checkEqualities eqs -- | Check using unifier. recheckConstraints :: Unify () recheckConstraints = mapM_ unifyEquality =<< takeEqualities unifyEquality :: Equality -> Unify () unifyEquality (Equal aHH u v) = unifyHH aHH u v i |->> x = do i |-> x recheckConstraints maybeAssign h i x = (i |->> x) `catchException` \e -> case e of UnclearOccurrence{} -> h _ -> throwException e unifySizes :: Term -> Term -> Unify () unifySizes u v = do sz <- liftTCM sizeType su <- liftTCM $ sizeView u sv <- liftTCM $ sizeView v case (su, sv) of (SizeSuc u, SizeSuc v) -> unify sz u v (SizeSuc u, SizeInf) -> unify sz u v (SizeInf, SizeSuc v) -> unify sz u v _ -> unifyAtomHH (Hom sz) u v checkEqualityHH -- | Possibly heterogeneous unification (but at same-shaped types). -- In het. situations, we only search for a mismatch! -- -- TODO: eta for records! unifyHH :: TypeHH -- ^ one or two types, need not be in (u)reduced form -> Term -> Term -> Unify () unifyHH aHH u v = do liftTCM $ reportSDoc "tc.lhs.unify" 15 $ sep [ text "unifyHH" , nest 2 $ (parens $ prettyTCM u) <+> text "=?=" , nest 2 $ parens $ prettyTCM v , nest 2 $ text ":" <+> prettyTCM aHH ] u <- liftTCM . constructorForm =<< ureduce u v <- liftTCM . constructorForm =<< ureduce v aHH <- ureduce aHH liftTCM $ reportSDoc "tc.lhs.unify" 25 $ sep [ text "unifyHH (reduced)" , nest 2 $ (parens $ prettyTCM u) <+> text "=?=" , nest 2 $ parens $ prettyTCM v , nest 2 $ text ":" <+> prettyTCM aHH ] -- obtain the (== Size) function isSizeName <- liftTCM isSizeNameTest -- Andreas, 2013-10-24 (fixing issue 924) -- Only if we cannot make progress, we try full normalization! let tryAgain aHH u v = do u <- liftTCM $ etaContract =<< normalise u v <- liftTCM $ etaContract =<< normalise v unifyAtomHH aHH u v $ \ aHH u v -> do -- Andreas, 2014-03-03 (issue 1061) -- As a last resort, normalize types to maybe get back -- to the homogeneous case caseMaybeM (liftTCM $ makeHom aHH) (checkEqualityHH aHH u v) $ \ a -> do unifyAtomHH (Hom a) u v checkEqualityHH -- check whether types have the same shape (aHH, sh) <- shapeViewHH aHH case sh of ElseSh -> checkEqualityHH aHH u v -- not a type or not same types DefSh d | isSizeName d -> unifySizes u v _ -> unifyAtomHH aHH u v tryAgain unifyAtomHH :: TypeHH -- ^ in ureduced form -> Term -> Term -> (TypeHH -> Term -> Term -> Unify ()) -- ^ continuation in case unification was inconclusive -> Unify () unifyAtomHH aHH0 u v tryAgain = do let (aHH, homogeneous, a) = case aHH0 of Hom a -> (aHH0, True, a) Het a1 a2 | a1 == a2 -> (Hom a1, True, a1) -- BRITTLE: just checking syn.eq. _ -> (aHH0, False, __IMPOSSIBLE__) -- use @a@ only if 'homogeneous' holds! fallback = tryAgain aHH u v -- Try again if occurs check fails non-rigidly. It might be -- that normalising gets rid of the occurrence. (|->?) = maybeAssign fallback liftTCM $ reportSDoc "tc.lhs.unify" 15 $ sep [ text "unifyAtom" , nest 2 $ prettyTCM u <> if flexibleTerm u then text " (flexible)" else empty , nest 2 $ text "=?=" , nest 2 $ prettyTCM v <> if flexibleTerm v then text " (flexible)" else empty , nest 2 $ text ":" <+> prettyTCM aHH ] liftTCM $ reportSDoc "tc.lhs.unify" 60 $ text $ "aHH = " ++ show aHH case (ignoreSharing u, ignoreSharing v) of -- Ulf, 2011-06-19 -- We don't want to worry about levels here. (Level l, _) -> do u <- liftTCM $ reallyUnLevelView l unifyAtomHH aHH u v tryAgain (_, Level l) -> do v <- liftTCM $ reallyUnLevelView l unifyAtomHH aHH u v tryAgain (Var i us, Var j vs) | i == j -> checkEqualityHH aHH u v -- Andreas, 2013-03-05: the following flex/flex case is an attempt at -- better dotting (see Issue811). Does not work perfectly, maybe the best choice -- which variable to assign cannot made locally, but would need a look at the full -- picture!? Or maybe the information on flexible variables in not yet good enough -- in the call to split in Coverage. (Var i [], Var j []) | homogeneous, Just fi <- findFlexible i, Just fj <- findFlexible j -> do liftTCM $ reportSDoc "tc.lhs.unify.flexflex" 20 $ sep [ text "unifying flexible/flexible" , nest 2 $ text "i =" <+> prettyTCM u <+> text ("; fi = " ++ show fi) , nest 2 $ text "j =" <+> prettyTCM v <+> text ("; fj = " ++ show fj) ] -- We assign the "bigger" variable, where dotted, hidden, earlier is bigger -- (in this order, see Problem.hs). -- The comparison is total. if fj >= fi then j |->? (u, a) else i |->? (v, a) (Var i [], _) | homogeneous && flexible i -> i |->? (v, a) (_, Var j []) | homogeneous && flexible j -> j |->? (u, a) (Con c us, Con c' vs) | c == c' -> do r <- liftTCM (dataOrRecordTypeHH' c aHH) case r of Just (d, b, parsIxsHH) -> do (b, parsIxsHH) <- ureduce (b, parsIxsHH) -- Jesper, 2014-05-03: When --without-K is enabled, we reconstruct -- datatype indices and unify them as well withoutKEnabled <- liftTCM $ optWithoutK <$> pragmaOptions when withoutKEnabled $ do def <- liftTCM $ getConstInfo d let parsHH = fst <$> parsIxsHH ixsHH = snd <$> parsIxsHH dtypeHH = defType def `applyHH` parsHH unifyConstructorArgs dtypeHH (leftHH ixsHH) (rightHH ixsHH) let a'HH = (b `apply`) . fst <$> parsIxsHH unifyConstructorArgs a'HH us vs Nothing -> checkEqualityHH aHH u v | otherwise -> constructorMismatchHH aHH u v -- Definitions are ok as long as they can't reduce (i.e. datatypes/axioms) (Def d us, Def d' vs) | d == d' -> do -- d must be a data, record or axiom def <- getConstInfo d let ok = case theDef def of Datatype{} -> True Record{} -> True Axiom{} -> True _ -> False inj <- liftTCM $ optInjectiveTypeConstructors <$> pragmaOptions if inj && ok then unifyElims (defType def) us vs `catchException` \ _ -> constructorMismatchHH aHH u v else checkEqualityHH aHH u v -- Andreas, 2011-05-30: if heads disagree, abort -- but do not raise "mismatch" because otherwise type constructors -- would be distinct | otherwise -> checkEqualityHH aHH u v -- typeError $ UnequalTerms CmpEq u v a (Lit l1, Lit l2) | l1 == l2 -> return () | otherwise -> constructorMismatchHH aHH u v -- We can instantiate metas if the other term is inert (constructor application) -- Andreas, 2011-09-13: test/succeed/IndexInference needs this feature. (MetaV m us, _) | homogeneous -> do ok <- liftTCM $ instMetaE a m us v liftTCM $ reportSDoc "tc.lhs.unify" 40 $ vcat [ fsep [ text "inst meta", text $ if ok then "(ok)" else "(not ok)" ] , nest 2 $ sep [ prettyTCM u, text ":=", prettyTCM =<< normalise u ] ] if ok then unify a u v else addEquality a u v (_, MetaV m vs) | homogeneous -> do ok <- liftTCM $ instMetaE a m vs u liftTCM $ reportSDoc "tc.lhs.unify" 40 $ vcat [ fsep [ text "inst meta", text $ if ok then "(ok)" else "(not ok)" ] , nest 2 $ sep [ prettyTCM v, text ":=", prettyTCM =<< normalise v ] ] if ok then unify a u v else addEquality a u v (Con c us, _) -> do md <- isEtaRecordTypeHH aHH case md of Just (d, parsHH) -> do (tel, vs) <- liftTCM $ etaExpandRecord d (rightHH parsHH) v b <- liftTCM $ getRecordConstructorType d bHH <- ureduce (b `applyHH` parsHH) unifyConstructorArgs bHH us vs Nothing -> fallback (_, Con c vs) -> do md <- isEtaRecordTypeHH aHH case md of Just (d, parsHH) -> do (tel, us) <- liftTCM $ etaExpandRecord d (leftHH parsHH) u b <- liftTCM $ getRecordConstructorType d bHH <- ureduce (b `applyHH` parsHH) unifyConstructorArgs bHH us vs Nothing -> fallback -- Andreas, 2011-05-30: If I put checkEquality below, then Issue81 fails -- because there are definitions blocked by flexibles that need postponement _ -> fallback unify :: Type -> Term -> Term -> Unify () unify a = unifyHH (Hom a) -- The contexts are transient when unifying, so we should just instantiate to -- constructor heads and generate fresh metas for the arguments. Beware of -- constructors that aren't fully applied. instMetaE :: Type -> MetaId -> Elims -> Term -> TCM Bool instMetaE a m es v = do case allApplyElims es of Just us -> instMeta a m us v Nothing -> return False instMeta :: Type -> MetaId -> Args -> Term -> TCM Bool instMeta a m us v = do app <- inertApplication a v reportSDoc "tc.lhs.unify" 50 $ sep [ text "inert" <+> sep [ text (show m), text (show us), parens $ prettyTCM v ] , nest 2 $ text "==" <+> text (show app) ] case app of Nothing -> return False Just (v', b, vs) -> do margs <- do -- The new metas should have the same dependencies as the original meta mv <- lookupMeta m -- Only generate metas for the arguments v' is actually applied to -- (in case of partial application) TelV tel0 _ <- telView b let tel = telFromList $ take (length vs) $ telToList tel0 b' = telePi tel (sort Prop) withMetaInfo' mv $ do tel <- getContextTelescope -- important: create the meta in the same environment as the original meta newArgsMetaCtx b' tel us noConstraints $ assignV DirEq m us (v' `apply` margs) return True `catchError` \_ -> return False inertApplication :: Type -> Term -> TCM (Maybe (Term, Type, Args)) inertApplication a v = case ignoreSharing v of Con c vs -> fmap (\ b -> (Con c [], b, vs)) <$> dataOrRecordType c a Def d es | Just vs <- allApplyElims es -> do def <- getConstInfo d let ans = Just (Def d [], defType def, vs) return $ case theDef def of Datatype{} -> ans Record{} -> ans Axiom{} -> ans _ -> Nothing _ -> return Nothing -- | Given the type of a constructor application the corresponding -- data or record type, applied to its parameters (extracted from the -- given type), is returned. -- -- Precondition: The type has to correspond to an application of the -- given constructor. dataOrRecordType :: ConHead -- ^ Constructor name. -> Type -- ^ Type of constructor application (must end in data/record). -> TCM (Maybe Type) -- ^ Type of constructor, applied to pars. dataOrRecordType c a = fmap (\ (d, b, pars, _) -> b `apply` pars) <$> dataOrRecordType' c a dataOrRecordType' :: ConHead -- ^ Constructor name. -> Type -- ^ Type of constructor application (must end in data/record). -> TCM (Maybe (QName, Type, Args, Args)) -- ^ Name of data/record type, -- type of constructor to be applied, -- data/record parameters, and -- data indices dataOrRecordType' c a = do -- The telescope ends with a datatype or a record. (d, args) <- do TelV _ (El _ def) <- telView a let Def d es = ignoreSharing def args = fromMaybe __IMPOSSIBLE__ $ allApplyElims es return (d, args) def <- theDef <$> getConstInfo d case def of Datatype{dataPars = n} -> do a' <- defType <$> getConInfo c let (pars, ixs) = genericSplitAt n args return $ Just (d, a', pars, ixs) Record{} -> do a' <- getRecordConstructorType d return $ Just (d, a', args, []) _ -> return Nothing -- | Heterogeneous situation. -- @a1@ and @a2@ need to end in same datatype/record. dataOrRecordTypeHH :: ConHead -- ^ Constructor name. -> TypeHH -- ^ Type(s) of constructor application (must end in same data/record). -> TCM (Maybe TypeHH) -- ^ Type of constructor, instantiated possibly heterogeneously to parameters. dataOrRecordTypeHH c (Hom a) = fmap Hom <$> dataOrRecordType c a dataOrRecordTypeHH c (Het a1 a2) = do r1 <- dataOrRecordType' c a1 r2 <- dataOrRecordType' c a2 -- b2 may have different parameters than b1! return $ case (r1, r2) of (Just (d1, b1, pars1, _), Just (d2, b2, pars2, _)) | d1 == d2 -> Just $ -- Andreas, 2011-09-15 if no parameters, we can stay homogeneous if null pars1 && null pars2 then Hom b1 -- if parameters, go heterogeneous -- TODO: make this smarter, because parameters could be equal! else Het (b1 `apply` pars1) (b2 `apply` pars2) _ -> Nothing dataOrRecordTypeHH' :: ConHead -> TypeHH -> TCM (Maybe (QName, Type, HomHet (Args, Args))) dataOrRecordTypeHH' c (Hom a) = do r <- dataOrRecordType' c a case r of Just (d, a', pars, ixs) -> return $ Just (d, a', Hom (pars, ixs)) Nothing -> return $ Nothing dataOrRecordTypeHH' c (Het a1 a2) = do r1 <- dataOrRecordType' c a1 r2 <- dataOrRecordType' c a2 case (r1, r2) of (Just (d1, b1, pars1, ixs1), Just (d2, b2, pars2, ixs2)) | d1 == d2 -> do -- Same constructors have same types, of course. unless (b1 == b2) __IMPOSSIBLE__ return $ Just $ if null pars1 && null pars2 && null ixs1 && null ixs2 then (d1, b1, Hom ([], [])) else (d1, b1, Het (pars1, ixs1) (pars2, ixs2)) _ -> return Nothing -- | Return record type identifier if argument is a record type. isEtaRecordTypeHH :: MonadTCM tcm => TypeHH -> tcm (Maybe (QName, HomHet Args)) isEtaRecordTypeHH (Hom a) = fmap (\ (d, ps) -> (d, Hom ps)) <$> liftTCM (isEtaRecordType a) isEtaRecordTypeHH (Het a1 a2) = do m1 <- liftTCM $ isEtaRecordType a1 m2 <- liftTCM $ isEtaRecordType a2 case (m1, m2) of (Just (d1, as1), Just (d2, as2)) | d1 == d2 -> return $ Just (d1, Het as1 as2) _ -> return Nothing -- | Views an expression (pair) as type shape. Fails if not same shape. data ShapeView a = PiSh (I.Dom a) (I.Abs a) | FunSh (I.Dom a) a | DefSh QName -- ^ data/record | VarSh Nat -- ^ neutral type | LitSh Literal -- ^ built-in type | SortSh | MetaSh -- ^ some meta | ElseSh -- ^ not a type or not definitely same shape deriving (Typeable, Show, Eq, Ord, Functor) -- | Return the type and its shape. Expects input in (u)reduced form. shapeView :: Type -> Unify (Type, ShapeView Type) shapeView t = do return . (t,) $ case ignoreSharing $ unEl t of Pi a (NoAbs _ b) -> FunSh a b Pi a (Abs x b) -> PiSh a (Abs x b) Def d vs -> DefSh d Var x vs -> VarSh x Lit l -> LitSh l Sort s -> SortSh MetaV m vs -> MetaSh _ -> ElseSh -- | Return the reduced type(s) and the common shape. shapeViewHH :: TypeHH -> Unify (TypeHH, ShapeView TypeHH) shapeViewHH (Hom a) = do (a, sh) <- shapeView a return (Hom a, fmap Hom sh) shapeViewHH (Het a1 a2) = do (a1, sh1) <- shapeView a1 (a2, sh2) <- shapeView a2 return . (Het a1 a2,) $ case (sh1, sh2) of (PiSh d1@(Dom i1 a1) b1, PiSh (Dom i2 a2) b2) | argInfoHiding i1 == argInfoHiding i2 -> PiSh (Dom (setRelevance (min (getRelevance i1) (getRelevance i2)) i1) (Het a1 a2)) (Abs (absName b1) (Het (absBody b1) (absBody b2))) (FunSh d1@(Dom i1 a1) b1, FunSh (Dom i2 a2) b2) | argInfoHiding i1 == argInfoHiding i2 -> FunSh (Dom (setRelevance (min (getRelevance i1) (getRelevance i2)) i1) (Het a1 a2)) (Het b1 b2) (DefSh d1, DefSh d2) | d1 == d2 -> DefSh d1 (VarSh x1, VarSh x2) | x1 == x2 -> VarSh x1 (LitSh l1, LitSh l2) | l1 == l2 -> LitSh l1 (SortSh, SortSh) -> SortSh _ -> ElseSh -- not types, or metas, or not same shape -- | @telViewUpToHH n t@ takes off the first @n@ function types of @t@. -- Takes off all if $n < 0$. telViewUpToHH :: Int -> TypeHH -> Unify TelViewHH telViewUpToHH 0 t = return $ TelV EmptyTel t telViewUpToHH n t = do (t, sh) <- shapeViewHH =<< liftTCM (traverse reduce t) case sh of PiSh a b -> absV a (absName b) <$> telViewUpToHH (n-1) (absBody b) FunSh a b -> absV a underscore <$> telViewUpToHH (n-1) (raise 1 b) _ -> return $ TelV EmptyTel t where absV a x (TelV tel t) = TelV (ExtendTel a (Abs x tel)) t